Normalized defining polynomial
\( x^{16} - 3 x^{15} + 4 x^{14} + 72 x^{13} - 554 x^{12} + 1444 x^{11} - 343 x^{10} - 1294 x^{9} - 9708 x^{8} - 38297 x^{7} + 158548 x^{6} + 22608 x^{5} - 286394 x^{4} + 169226 x^{3} - 234549 x^{2} - 77161 x + 449591 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2933549631417734560791015625=5^{12}\cdot 13^{4}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{139} a^{14} + \frac{51}{139} a^{13} + \frac{68}{139} a^{12} - \frac{6}{139} a^{11} - \frac{40}{139} a^{10} - \frac{5}{139} a^{9} - \frac{43}{139} a^{8} - \frac{35}{139} a^{7} - \frac{39}{139} a^{6} - \frac{46}{139} a^{5} - \frac{68}{139} a^{4} + \frac{62}{139} a^{3} - \frac{46}{139} a^{2} - \frac{38}{139} a + \frac{7}{139}$, $\frac{1}{489296472157484286812170599491583633631947179} a^{15} - \frac{763338319084774041889340132217232521351625}{489296472157484286812170599491583633631947179} a^{14} - \frac{162719095583391617122204640743399794797899773}{489296472157484286812170599491583633631947179} a^{13} - \frac{205847029997390248324011340003188776144806451}{489296472157484286812170599491583633631947179} a^{12} + \frac{203641067774240983118142506169476924645927344}{489296472157484286812170599491583633631947179} a^{11} - \frac{214373179900616800790755016707569760943709588}{489296472157484286812170599491583633631947179} a^{10} - \frac{231273439247645303120483482580595686189332134}{489296472157484286812170599491583633631947179} a^{9} + \frac{220406536554259446296756892911915409482557531}{489296472157484286812170599491583633631947179} a^{8} - \frac{63313863474588581895494697941919031796245340}{489296472157484286812170599491583633631947179} a^{7} + \frac{20007300100678535322709999461095210075525850}{489296472157484286812170599491583633631947179} a^{6} - \frac{127851203893549632508543481200498154532907266}{489296472157484286812170599491583633631947179} a^{5} + \frac{206514408308170299356374926620772690949453022}{489296472157484286812170599491583633631947179} a^{4} + \frac{219809928457859587625013635369089876132568642}{489296472157484286812170599491583633631947179} a^{3} - \frac{37876854323100260375610104296811399685884991}{489296472157484286812170599491583633631947179} a^{2} + \frac{54692381965047906481428990931031445554877963}{489296472157484286812170599491583633631947179} a + \frac{189982962172455049233034864670412830857564724}{489296472157484286812170599491583633631947179}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20771882.9997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2^2$ (as 16T106):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $OD_{16}:C_2^2$ |
| Character table for $OD_{16}:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{145}) \), 4.4.725.1 x2, 4.4.4205.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |