Normalized defining polynomial
\( x^{16} - 7 x^{15} + 20 x^{14} - 13 x^{13} - 93 x^{12} + 265 x^{11} - 144 x^{10} - 550 x^{9} + 1158 x^{8} - 274 x^{7} - 1885 x^{6} + 2804 x^{5} - 799 x^{4} - 2754 x^{3} + 4128 x^{2} - 2320 x + 464 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(293278528764541359765625=5^{8}\cdot 29^{4}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{11} + \frac{3}{10} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{3}{10} a^{5} - \frac{1}{10} a^{3} + \frac{3}{10} a^{2} + \frac{1}{10} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{3}{10} a^{7} - \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{9} + \frac{1}{10} a^{8} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{100} a^{14} - \frac{1}{100} a^{13} + \frac{1}{100} a^{11} + \frac{3}{100} a^{10} + \frac{49}{100} a^{9} - \frac{1}{50} a^{8} + \frac{3}{25} a^{7} + \frac{9}{50} a^{6} - \frac{11}{25} a^{5} - \frac{31}{100} a^{4} - \frac{23}{50} a^{3} + \frac{29}{100} a^{2} - \frac{23}{50} a - \frac{11}{25}$, $\frac{1}{3407202715252600} a^{15} + \frac{773432912097}{681440543050520} a^{14} + \frac{21383471568511}{851800678813150} a^{13} + \frac{98525097341491}{3407202715252600} a^{12} + \frac{94505340597919}{3407202715252600} a^{11} - \frac{74709869322443}{3407202715252600} a^{10} - \frac{152326171883891}{425900339406575} a^{9} + \frac{49178622416751}{340720271525260} a^{8} - \frac{22585644179007}{340720271525260} a^{7} + \frac{744241132534397}{1703601357626300} a^{6} - \frac{8222126533153}{681440543050520} a^{5} - \frac{123557100771873}{851800678813150} a^{4} + \frac{775389449570033}{3407202715252600} a^{3} + \frac{94936235870959}{1703601357626300} a^{2} - \frac{7041140380367}{170360135762630} a + \frac{2084437056332}{425900339406575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 682887.099408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4^2.C_2$ (as 16T376):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $D_4^2.C_2$ |
| Character table for $D_4^2.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.73225.1, 4.4.2525.1, 4.4.725.1, 8.4.18674205625.2, 8.4.18674205625.1, 8.8.5361900625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $101$ | 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |