Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} - 95 x^{13} - 361 x^{12} + 1253 x^{11} - 648 x^{10} + 17482 x^{9} + 26519 x^{8} - 35578 x^{7} + 310904 x^{6} - 223744 x^{5} - 3002672 x^{4} - 16048352 x^{3} - 37194264 x^{2} - 8998752 x + 21705584 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(292906977896507671746287067392=2^{8}\cdot 17^{15}\cdot 19993^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 19993$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{886536231835095265656937510162923597074422204020295816} a^{15} - \frac{35402401314981961177443114277493757253036640881454973}{886536231835095265656937510162923597074422204020295816} a^{14} + \frac{60811390566422194873016461449197793737076151723798189}{886536231835095265656937510162923597074422204020295816} a^{13} + \frac{38373992188541418877797266026404415560709709974952063}{886536231835095265656937510162923597074422204020295816} a^{12} - \frac{7915693841281711791244746412766602891945010468211295}{886536231835095265656937510162923597074422204020295816} a^{11} + \frac{18718120687869614251432134837048669449241360079598523}{886536231835095265656937510162923597074422204020295816} a^{10} - \frac{146154811549612896354217650600152067622099369791477293}{443268115917547632828468755081461798537211102010147908} a^{9} + \frac{293729010916378510785550535649802326778060613310431}{1443870084421979260027585521437986314453456358339244} a^{8} - \frac{339241611190951313506742325896369197904978673030756615}{886536231835095265656937510162923597074422204020295816} a^{7} + \frac{12213911589883403475605435594281183070477428297663245}{110817028979386908207117188770365449634302775502536977} a^{6} - \frac{32139839104543712553029412915193945207704344233996487}{443268115917547632828468755081461798537211102010147908} a^{5} - \frac{17061808498770081006493344385924458324054831440665279}{443268115917547632828468755081461798537211102010147908} a^{4} - \frac{52778352847091785292107373017353202153357585156574854}{110817028979386908207117188770365449634302775502536977} a^{3} - \frac{36281193654989282902962107549185731631211653099837988}{110817028979386908207117188770365449634302775502536977} a^{2} + \frac{45578983358274778508321817882152960001790249383723347}{110817028979386908207117188770365449634302775502536977} a + \frac{37938877504621441885302655238438466042263798799954040}{110817028979386908207117188770365449634302775502536977}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 397510636.446 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 19993 | Data not computed | ||||||