Normalized defining polynomial
\( x^{16} - 2 x^{15} - 60 x^{14} + 50 x^{13} + 1030 x^{12} + 704 x^{11} - 2378 x^{10} - 28590 x^{9} - 41115 x^{8} + 277040 x^{7} - 101178 x^{6} - 1427454 x^{5} + 792520 x^{4} + 2128630 x^{3} - 646350 x^{2} - 2877768 x + 857261 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286597995038310400000000000000=2^{28}\cdot 5^{14}\cdot 41^{2}\cdot 101^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{305} a^{14} - \frac{23}{305} a^{13} - \frac{18}{305} a^{12} + \frac{18}{305} a^{11} - \frac{11}{305} a^{10} + \frac{12}{305} a^{9} + \frac{5}{61} a^{8} - \frac{25}{61} a^{7} + \frac{78}{305} a^{6} - \frac{93}{305} a^{5} - \frac{33}{305} a^{4} - \frac{133}{305} a^{3} + \frac{152}{305} a^{2} + \frac{47}{305} a - \frac{24}{61}$, $\frac{1}{6602107990525976295628360977431342174901653245} a^{15} - \frac{1451638162633220077482848109723901488266952}{1320421598105195259125672195486268434980330649} a^{14} - \frac{294254410954109072567157679472250789418309208}{6602107990525976295628360977431342174901653245} a^{13} + \frac{333562053769370715874676033979176388487962119}{6602107990525976295628360977431342174901653245} a^{12} + \frac{102154426600396982280579023846815958709838807}{6602107990525976295628360977431342174901653245} a^{11} + \frac{38405926817295418385012080223719218053215833}{1320421598105195259125672195486268434980330649} a^{10} - \frac{130972860647924913560040801434980833399366478}{6602107990525976295628360977431342174901653245} a^{9} + \frac{109702976645463811182653642259851160687207215}{1320421598105195259125672195486268434980330649} a^{8} + \frac{2360716728595776146776121430992133353118180513}{6602107990525976295628360977431342174901653245} a^{7} - \frac{1002563306932437032727425317104214395460667309}{6602107990525976295628360977431342174901653245} a^{6} - \frac{233086878364485153958895849401913220612044627}{6602107990525976295628360977431342174901653245} a^{5} - \frac{2009364988586131363607222591660314431399538949}{6602107990525976295628360977431342174901653245} a^{4} + \frac{2620779950893335984697547402449706048947093682}{6602107990525976295628360977431342174901653245} a^{3} + \frac{1234606216723600226900821079365251530442572243}{6602107990525976295628360977431342174901653245} a^{2} + \frac{458669212830810154654310851538757691896182589}{1320421598105195259125672195486268434980330649} a + \frac{11502961089913288244208371458370420667220186}{108231278533212726157841983236579379916420545}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 350838597.911 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.6464000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 101 | Data not computed | ||||||