Normalized defining polynomial
\( x^{16} - 4 x^{15} - 37 x^{14} - 6172 x^{13} - 527806 x^{12} + 1651648 x^{11} - 61310410 x^{10} + 688001144 x^{9} + 37964908341 x^{8} - 460309412308 x^{7} + 4828308042143 x^{6} - 15136486766876 x^{5} - 98143453715880 x^{4} + 844893035355224 x^{3} - 2797368182141824 x^{2} + 1561832763993728 x + 1333629299617792 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2857263440495560367103411585720766893299521110665609=71^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1644.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4}$, $\frac{1}{32} a^{7} + \frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4544} a^{8} + \frac{69}{4544} a^{7} - \frac{269}{4544} a^{6} + \frac{139}{4544} a^{5} - \frac{73}{1136} a^{4} - \frac{29}{568} a^{3} + \frac{19}{568} a^{2} + \frac{26}{71} a - \frac{35}{71}$, $\frac{1}{18176} a^{9} - \frac{1}{9088} a^{8} + \frac{57}{4544} a^{7} - \frac{463}{9088} a^{6} - \frac{221}{18176} a^{5} + \frac{255}{2272} a^{4} + \frac{161}{2272} a^{3} + \frac{563}{2272} a^{2} + \frac{143}{568} a$, $\frac{1}{18176} a^{10} - \frac{11}{9088} a^{7} - \frac{889}{18176} a^{6} - \frac{1}{9088} a^{5} - \frac{241}{2272} a^{4} + \frac{565}{2272} a^{3} + \frac{141}{1136} a^{2} + \frac{141}{284} a - \frac{28}{71}$, $\frac{1}{1599488} a^{11} + \frac{3}{1599488} a^{10} + \frac{15}{799744} a^{9} - \frac{41}{799744} a^{8} - \frac{14563}{1599488} a^{7} + \frac{94511}{1599488} a^{6} + \frac{21147}{399872} a^{5} + \frac{2889}{24992} a^{4} + \frac{44295}{199936} a^{3} - \frac{127}{24992} a^{2} - \frac{973}{12496} a + \frac{25}{781}$, $\frac{1}{25591808} a^{12} - \frac{1}{3198976} a^{11} - \frac{443}{25591808} a^{10} + \frac{7}{6397952} a^{9} - \frac{461}{25591808} a^{8} - \frac{8227}{799744} a^{7} + \frac{1039311}{25591808} a^{6} - \frac{121075}{6397952} a^{5} + \frac{269135}{3198976} a^{4} - \frac{174629}{3198976} a^{3} + \frac{5429}{199936} a^{2} - \frac{39827}{199936} a + \frac{245}{568}$, $\frac{1}{102367232} a^{13} + \frac{1}{102367232} a^{12} - \frac{3}{102367232} a^{11} - \frac{2423}{102367232} a^{10} - \frac{1745}{102367232} a^{9} - \frac{479}{9306112} a^{8} + \frac{1216111}{102367232} a^{7} - \frac{1415045}{102367232} a^{6} + \frac{19097}{2326528} a^{5} - \frac{747183}{6397952} a^{4} + \frac{637443}{12795904} a^{3} - \frac{48523}{399872} a^{2} - \frac{59339}{799744} a - \frac{4721}{24992}$, $\frac{1}{3259493050744832} a^{14} + \frac{6305559}{1629746525372416} a^{13} + \frac{19659733}{1629746525372416} a^{12} - \frac{25003869}{148158775033856} a^{11} - \frac{18750921807}{814873262686208} a^{10} - \frac{33230301097}{1629746525372416} a^{9} + \frac{139528833375}{1629746525372416} a^{8} - \frac{23540037221121}{1629746525372416} a^{7} + \frac{23023539630699}{3259493050744832} a^{6} + \frac{23806930950299}{814873262686208} a^{5} - \frac{26600315717379}{407436631343104} a^{4} + \frac{78524157982119}{407436631343104} a^{3} + \frac{5231985628247}{25464789458944} a^{2} - \frac{10275084257359}{25464789458944} a + \frac{307984538019}{795774670592}$, $\frac{1}{675587816537036499851461153855354816695209629026467967708222818615296} a^{15} + \frac{79132349486070941207126956507463328694241055493841299}{675587816537036499851461153855354816695209629026467967708222818615296} a^{14} + \frac{38806473167614278178285276621674425051886118983900827771849}{42224238533564781240716322115959676043450601814154247981763926163456} a^{13} - \frac{1124258875234994047092670691708951018563301340268891337606603}{168896954134259124962865288463838704173802407256616991927055704653824} a^{12} - \frac{28038869386321315884563381592706259256795230364308345640668761}{337793908268518249925730576927677408347604814513233983854111409307648} a^{11} - \frac{7174584017494784531383838881773457495021172630971090907915813279}{337793908268518249925730576927677408347604814513233983854111409307648} a^{10} - \frac{109260045958186374176981300547264088241504552213163209619964759}{168896954134259124962865288463838704173802407256616991927055704653824} a^{9} + \frac{2415722728599776430262429375448073051377419306930963460198517453}{168896954134259124962865288463838704173802407256616991927055704653824} a^{8} - \frac{167393082713162461318080924293310619999197174090013229104405311775}{675587816537036499851461153855354816695209629026467967708222818615296} a^{7} - \frac{1364863399470444988054449641814555023699434021005279230938193893917}{675587816537036499851461153855354816695209629026467967708222818615296} a^{6} - \frac{9534428230352044676104710373743037534567992388740861684678415553439}{168896954134259124962865288463838704173802407256616991927055704653824} a^{5} + \frac{22001667982014631215534152632045853030703565362060711700401575709}{959641784853745028198098229908174455532968223048960181403725594624} a^{4} - \frac{26284156332357014071401535552733690775551909925836159980410099937}{108128651814506482050489941398104164003714729357629316214504292352} a^{3} - \frac{104015446959370312109797114776375644013823584058849340133456485791}{1319507454173899413772385066123739876357831306692320249430122692608} a^{2} + \frac{644193635614974225415906680059972380967569563491223598136887904757}{5278029816695597655089540264494959505431325226769280997720490770432} a + \frac{33414323209729158941621020176527214414764150460213687112579613327}{164938431771737426721548133265467484544728913336540031178765336576}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58327836957700000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.1123992572569351274249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.8.6.3 | $x^{8} - 71 x^{4} + 55451$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 71.8.6.3 | $x^{8} - 71 x^{4} + 55451$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 89 | Data not computed | ||||||