Properties

Label 16.8.28189975654...4224.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{32}\cdot 17^{8}\cdot 97^{2}$
Root discriminant $29.22$
Ramified primes $2, 17, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T608)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![196, 224, -760, -648, 872, 400, -168, 68, -3, -36, -42, -52, -6, -4, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 10*x^14 - 4*x^13 - 6*x^12 - 52*x^11 - 42*x^10 - 36*x^9 - 3*x^8 + 68*x^7 - 168*x^6 + 400*x^5 + 872*x^4 - 648*x^3 - 760*x^2 + 224*x + 196)
 
gp: K = bnfinit(x^16 - 10*x^14 - 4*x^13 - 6*x^12 - 52*x^11 - 42*x^10 - 36*x^9 - 3*x^8 + 68*x^7 - 168*x^6 + 400*x^5 + 872*x^4 - 648*x^3 - 760*x^2 + 224*x + 196, 1)
 

Normalized defining polynomial

\( x^{16} - 10 x^{14} - 4 x^{13} - 6 x^{12} - 52 x^{11} - 42 x^{10} - 36 x^{9} - 3 x^{8} + 68 x^{7} - 168 x^{6} + 400 x^{5} + 872 x^{4} - 648 x^{3} - 760 x^{2} + 224 x + 196 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(281899756545547618484224=2^{32}\cdot 17^{8}\cdot 97^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{24} a^{12} - \frac{1}{12} a^{11} - \frac{1}{24} a^{10} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{7}{24} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{11} - \frac{1}{12} a^{10} - \frac{1}{8} a^{9} - \frac{1}{12} a^{8} + \frac{7}{24} a^{7} - \frac{5}{12} a^{6} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{5}{12} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{768} a^{14} + \frac{1}{128} a^{13} - \frac{7}{768} a^{12} + \frac{11}{192} a^{11} + \frac{41}{768} a^{10} - \frac{37}{384} a^{9} + \frac{145}{768} a^{8} - \frac{7}{64} a^{7} + \frac{7}{64} a^{6} - \frac{17}{48} a^{5} - \frac{71}{192} a^{4} + \frac{13}{32} a^{3} - \frac{9}{64} a^{2} - \frac{1}{96} a + \frac{49}{192}$, $\frac{1}{485550008832} a^{15} - \frac{894115}{69364286976} a^{14} + \frac{803469757}{161850002944} a^{13} + \frac{39447607}{3823228416} a^{12} + \frac{54571630373}{485550008832} a^{11} + \frac{31472935043}{485550008832} a^{10} - \frac{27447741}{23121428992} a^{9} + \frac{61830379}{161850002944} a^{8} + \frac{7254625121}{30346875552} a^{7} - \frac{4465787323}{121387502208} a^{6} + \frac{793044611}{17341071744} a^{5} + \frac{32218019563}{121387502208} a^{4} + \frac{44839224571}{121387502208} a^{3} - \frac{4591803011}{40462500736} a^{2} + \frac{29026233991}{121387502208} a + \frac{7779040547}{17341071744}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6457130.64998 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T608):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), 4.4.9248.1 x2, 4.4.4352.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.5473632256.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$97$97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$