Normalized defining polynomial
\( x^{16} - 110 x^{13} - 766 x^{12} + 250 x^{11} - 940 x^{10} + 18540 x^{9} + 18321 x^{8} + 36470 x^{7} + 38600 x^{6} - 860760 x^{5} + 677094 x^{4} - 1927690 x^{3} + 1945660 x^{2} + 3510750 x - 1556119 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2802086158223343616000000000000=2^{28}\cdot 5^{12}\cdot 101^{4}\cdot 641^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101, 641$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{77302664776109350024885001028936440669203585547488579} a^{15} + \frac{22347800967690272353564506307240323411895126931380669}{77302664776109350024885001028936440669203585547488579} a^{14} - \frac{32483855852798760852126946012766911953233283315774586}{77302664776109350024885001028936440669203585547488579} a^{13} - \frac{9047393733710844378309512101786795017870736202607850}{77302664776109350024885001028936440669203585547488579} a^{12} - \frac{35674629079673767717639497697078204369059448463292905}{77302664776109350024885001028936440669203585547488579} a^{11} + \frac{13468403085995028068288811434828801888930691466962275}{77302664776109350024885001028936440669203585547488579} a^{10} - \frac{5610058268123463816229386131563130457683715675992117}{77302664776109350024885001028936440669203585547488579} a^{9} - \frac{35605130757938632186578717193264115108017873258018263}{77302664776109350024885001028936440669203585547488579} a^{8} + \frac{16760655012876215660736836989634250967908699850361015}{77302664776109350024885001028936440669203585547488579} a^{7} + \frac{11336261205667012360870517054529860486675656509994674}{77302664776109350024885001028936440669203585547488579} a^{6} + \frac{33679900044920339254703848987793554651596312529452557}{77302664776109350024885001028936440669203585547488579} a^{5} + \frac{36774326018571532030502703159324632206811138820991549}{77302664776109350024885001028936440669203585547488579} a^{4} - \frac{7856715058296365929271835493029868483592882085137003}{77302664776109350024885001028936440669203585547488579} a^{3} + \frac{12698454385030883801982561475528548449646522908397147}{77302664776109350024885001028936440669203585547488579} a^{2} + \frac{31133431723933666267646919939167792566911788633842168}{77302664776109350024885001028936440669203585547488579} a - \frac{21212412592552368242771122242593767372246210030422223}{77302664776109350024885001028936440669203585547488579}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2156184367.32 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for t16n1161 |
| Character table for t16n1161 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.6464000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 101 | Data not computed | ||||||
| 641 | Data not computed | ||||||