Properties

Label 16.8.28004445735...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 97^{4}$
Root discriminant $51.93$
Ramified primes $2, 5, 13, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $(C_2\times C_4).C_2^4$ (as 16T205)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-238999, -1648578, 1530257, -242146, 65402, -190596, -308637, 3618, -15990, -10546, 7538, 1002, -214, 76, -23, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 - 23*x^14 + 76*x^13 - 214*x^12 + 1002*x^11 + 7538*x^10 - 10546*x^9 - 15990*x^8 + 3618*x^7 - 308637*x^6 - 190596*x^5 + 65402*x^4 - 242146*x^3 + 1530257*x^2 - 1648578*x - 238999)
 
gp: K = bnfinit(x^16 - 6*x^15 - 23*x^14 + 76*x^13 - 214*x^12 + 1002*x^11 + 7538*x^10 - 10546*x^9 - 15990*x^8 + 3618*x^7 - 308637*x^6 - 190596*x^5 + 65402*x^4 - 242146*x^3 + 1530257*x^2 - 1648578*x - 238999, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} - 23 x^{14} + 76 x^{13} - 214 x^{12} + 1002 x^{11} + 7538 x^{10} - 10546 x^{9} - 15990 x^{8} + 3618 x^{7} - 308637 x^{6} - 190596 x^{5} + 65402 x^{4} - 242146 x^{3} + 1530257 x^{2} - 1648578 x - 238999 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2800444573576914534400000000=2^{24}\cdot 5^{8}\cdot 13^{6}\cdot 97^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2861} a^{14} - \frac{914}{2861} a^{13} + \frac{816}{2861} a^{12} - \frac{174}{2861} a^{11} + \frac{359}{2861} a^{10} - \frac{317}{2861} a^{9} - \frac{964}{2861} a^{8} - \frac{297}{2861} a^{7} - \frac{643}{2861} a^{6} + \frac{812}{2861} a^{5} - \frac{720}{2861} a^{4} + \frac{11}{2861} a^{3} + \frac{270}{2861} a^{2} + \frac{129}{2861} a + \frac{443}{2861}$, $\frac{1}{309375804049599998294179518069220359472390570369} a^{15} + \frac{6593238996675735926481164514092844934123740}{309375804049599998294179518069220359472390570369} a^{14} + \frac{113950543060811318752747846524844202602845292112}{309375804049599998294179518069220359472390570369} a^{13} - \frac{63391518590249693200838384952430978247616307451}{309375804049599998294179518069220359472390570369} a^{12} - \frac{47897176668630313930561901096640728279326453865}{309375804049599998294179518069220359472390570369} a^{11} - \frac{52712499384280958056889968709199561436956531885}{309375804049599998294179518069220359472390570369} a^{10} - \frac{71517231978291369609416219721393777720697384971}{309375804049599998294179518069220359472390570369} a^{9} - \frac{55330547759488934806907046079869574107764466994}{309375804049599998294179518069220359472390570369} a^{8} + \frac{139189160548586979454568097327561530717552757392}{309375804049599998294179518069220359472390570369} a^{7} + \frac{4307185787691786418104322511898483741929460861}{9979864646761290267554178002232914821690018399} a^{6} - \frac{4092239389811385661053241103621264259520881416}{309375804049599998294179518069220359472390570369} a^{5} + \frac{143677768352877476753090882738522144063634362140}{309375804049599998294179518069220359472390570369} a^{4} + \frac{138141118429865023784246990521716665346651257439}{309375804049599998294179518069220359472390570369} a^{3} - \frac{122132474930742380727731152927808516242166683814}{309375804049599998294179518069220359472390570369} a^{2} - \frac{51869341111645250160125825952111785046478348315}{309375804049599998294179518069220359472390570369} a - \frac{56016113223792998066628932239081836331807304464}{309375804049599998294179518069220359472390570369}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 49460085.7949 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2\times C_4).C_2^4$ (as 16T205):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $(C_2\times C_4).C_2^4$
Character table for $(C_2\times C_4).C_2^4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.432640000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$13$13.8.0.1$x^{8} + 4 x^{2} - x + 6$$1$$8$$0$$C_8$$[\ ]^{8}$
13.8.6.3$x^{8} + 65 x^{4} + 1352$$4$$2$$6$$C_8$$[\ ]_{4}^{2}$
$97$97.8.0.1$x^{8} - x + 84$$1$$8$$0$$C_8$$[\ ]^{8}$
97.8.4.2$x^{8} - 912673 x^{2} + 2036173463$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$