Properties

Label 16.8.27963997857...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{34}\cdot 3^{8}\cdot 5^{6}\cdot 7^{2}\cdot 47^{2}\cdot 383^{2}$
Root discriminant $59.97$
Ramified primes $2, 3, 5, 7, 47, 383$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1697

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41714, -139192, -94616, 160028, 245106, 29756, -105858, -35876, 23487, 9632, -3712, -1348, 441, 104, -34, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 34*x^14 + 104*x^13 + 441*x^12 - 1348*x^11 - 3712*x^10 + 9632*x^9 + 23487*x^8 - 35876*x^7 - 105858*x^6 + 29756*x^5 + 245106*x^4 + 160028*x^3 - 94616*x^2 - 139192*x - 41714)
 
gp: K = bnfinit(x^16 - 4*x^15 - 34*x^14 + 104*x^13 + 441*x^12 - 1348*x^11 - 3712*x^10 + 9632*x^9 + 23487*x^8 - 35876*x^7 - 105858*x^6 + 29756*x^5 + 245106*x^4 + 160028*x^3 - 94616*x^2 - 139192*x - 41714, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 34 x^{14} + 104 x^{13} + 441 x^{12} - 1348 x^{11} - 3712 x^{10} + 9632 x^{9} + 23487 x^{8} - 35876 x^{7} - 105858 x^{6} + 29756 x^{5} + 245106 x^{4} + 160028 x^{3} - 94616 x^{2} - 139192 x - 41714 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27963997857697165737984000000=2^{34}\cdot 3^{8}\cdot 5^{6}\cdot 7^{2}\cdot 47^{2}\cdot 383^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 47, 383$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{25} a^{14} + \frac{1}{25} a^{13} - \frac{2}{25} a^{12} + \frac{1}{25} a^{11} + \frac{2}{25} a^{10} - \frac{1}{25} a^{9} + \frac{2}{25} a^{8} - \frac{2}{5} a^{7} - \frac{4}{25} a^{6} - \frac{6}{25} a^{5} + \frac{9}{25} a^{4} + \frac{4}{25} a^{3} - \frac{6}{25} a^{2} - \frac{9}{25} a + \frac{12}{25}$, $\frac{1}{2707432751042011073525} a^{15} - \frac{30316952150194245683}{2707432751042011073525} a^{14} - \frac{98238756922721122721}{2707432751042011073525} a^{13} + \frac{145837386532749641614}{2707432751042011073525} a^{12} + \frac{141782626636197292853}{2707432751042011073525} a^{11} - \frac{27648193180773103204}{2707432751042011073525} a^{10} - \frac{177577757661226934869}{2707432751042011073525} a^{9} + \frac{179577525916960985312}{2707432751042011073525} a^{8} - \frac{877781964432682575414}{2707432751042011073525} a^{7} + \frac{23471938092920827444}{108297310041680442941} a^{6} - \frac{920195454700834544557}{2707432751042011073525} a^{5} + \frac{528058387983801937248}{2707432751042011073525} a^{4} - \frac{509579207931685784557}{2707432751042011073525} a^{3} - \frac{69122309601236518523}{541486550208402214705} a^{2} + \frac{700808498000657062228}{2707432751042011073525} a - \frac{1073982530995226122098}{2707432751042011073525}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 239011824.14 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1697:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8192
The 152 conjugacy class representatives for t16n1697 are not computed
Character table for t16n1697 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 8.4.95556796416.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.18.56$x^{8} + 168 x^{4} + 912$$8$$1$$18$$D_4\times C_2$$[2, 2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
3Data not computed
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$47$$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
383Data not computed