Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} - 684 x^{13} - 14245 x^{12} - 8754 x^{11} + 214599 x^{10} + 581416 x^{9} + 11811196 x^{8} + 46895440 x^{7} + 110537580 x^{6} + 509315106 x^{5} + 677109343 x^{4} + 1464634672 x^{3} + 1252749264 x^{2} - 229349504 x - 18436864 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27961156076874708483172971177878992693897=11^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $337.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{164} a^{13} + \frac{5}{82} a^{12} - \frac{11}{164} a^{11} + \frac{17}{82} a^{10} - \frac{35}{164} a^{9} + \frac{1}{41} a^{8} + \frac{19}{164} a^{7} + \frac{33}{82} a^{6} - \frac{20}{41} a^{5} - \frac{21}{82} a^{4} + \frac{19}{41} a^{3} - \frac{14}{41} a^{2} - \frac{11}{164} a - \frac{4}{41}$, $\frac{1}{1312} a^{14} - \frac{29}{1312} a^{12} + \frac{9}{82} a^{11} - \frac{293}{1312} a^{10} + \frac{13}{656} a^{9} + \frac{143}{1312} a^{8} - \frac{31}{328} a^{7} - \frac{21}{328} a^{6} - \frac{9}{82} a^{5} - \frac{81}{328} a^{4} + \frac{289}{656} a^{3} - \frac{25}{1312} a^{2} - \frac{161}{328} a - \frac{31}{82}$, $\frac{1}{318418398670884169291461845977193634786862318858019584572858154438784} a^{15} - \frac{2452261166541473615403845134114806628376066392212103488168870997}{79604599667721042322865461494298408696715579714504896143214538609696} a^{14} + \frac{401086591337124249408243055329446525181122357015658948971136810003}{318418398670884169291461845977193634786862318858019584572858154438784} a^{13} - \frac{7963515055525626317946320674330101478113765078553129306511261156663}{79604599667721042322865461494298408696715579714504896143214538609696} a^{12} + \frac{1360145404593790031663816463064587820416611366216886349257113196267}{318418398670884169291461845977193634786862318858019584572858154438784} a^{11} - \frac{19476052804935309343133656514218033738546059576169622913247496837009}{159209199335442084645730922988596817393431159429009792286429077219392} a^{10} + \frac{77789210395111863324009753731956360415134450405803652996776685751415}{318418398670884169291461845977193634786862318858019584572858154438784} a^{9} + \frac{7250533580168099874532986984291905432231137500300823298465965890707}{39802299833860521161432730747149204348357789857252448071607269304848} a^{8} - \frac{11914721432305196743656301381796143202005459299642033275933488910893}{79604599667721042322865461494298408696715579714504896143214538609696} a^{7} - \frac{6372488798375999733704069094518071943058755939556056817395077516371}{19901149916930260580716365373574602174178894928626224035803634652424} a^{6} + \frac{10517988328185033310554742990826677578896927138916532204072809630203}{79604599667721042322865461494298408696715579714504896143214538609696} a^{5} - \frac{26665203991057134082123188421347818151483154555517567297208502177583}{159209199335442084645730922988596817393431159429009792286429077219392} a^{4} - \frac{38746110608875978799611721293579205050736874247955853439259657578049}{318418398670884169291461845977193634786862318858019584572858154438784} a^{3} - \frac{4164882868657475740226818593438317942090285325207243446362593286575}{9950574958465130290358182686787301087089447464313112017901817326212} a^{2} + \frac{4279638417574353985076191282011892294394582161714973323119674750197}{9950574958465130290358182686787301087089447464313112017901817326212} a + \frac{1450460692698016876955969975067692775187093758438863849142084199343}{4975287479232565145179091343393650543544723732156556008950908663106}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 188399221895000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.161744961718099177.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 73 | Data not computed | ||||||