Normalized defining polynomial
\( x^{16} - 12 x^{14} - 16 x^{13} - 58 x^{12} + 144 x^{11} + 648 x^{10} - 488 x^{9} - 141 x^{8} + 1088 x^{7} - 416 x^{6} - 136 x^{5} + 102 x^{4} + 224 x^{3} - 164 x^{2} + 24 x - 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2757842498387888526327808=2^{56}\cdot 337^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5550241271150725161751} a^{15} + \frac{917309360141175133167}{5550241271150725161751} a^{14} - \frac{609187009759651136579}{5550241271150725161751} a^{13} - \frac{2009054769965935594560}{5550241271150725161751} a^{12} + \frac{804889824016345707548}{5550241271150725161751} a^{11} + \frac{1070954312453961541136}{5550241271150725161751} a^{10} - \frac{15333725795599089790}{118090239811717556633} a^{9} - \frac{732466681342401823479}{5550241271150725161751} a^{8} + \frac{761065866345693163132}{5550241271150725161751} a^{7} + \frac{1421707214810728359120}{5550241271150725161751} a^{6} + \frac{319946333642299848456}{5550241271150725161751} a^{5} - \frac{2035434773189129479078}{5550241271150725161751} a^{4} + \frac{1400258130301328406418}{5550241271150725161751} a^{3} - \frac{369376422460312073650}{5550241271150725161751} a^{2} - \frac{1606838364781581990451}{5550241271150725161751} a - \frac{948157856214500454966}{5550241271150725161751}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2198186.32965 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1413480448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 337 | Data not computed | ||||||