Normalized defining polynomial
\( x^{16} - 4 x^{14} - 16 x^{13} - 98 x^{12} - 208 x^{11} - 320 x^{10} - 152 x^{9} + 859 x^{8} + 1728 x^{7} + 2824 x^{6} + 3528 x^{5} + 2942 x^{4} + 2592 x^{3} - 1940 x^{2} - 4136 x - 1361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2757842498387888526327808=2^{56}\cdot 337^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{45300298382939814103327294729} a^{15} - \frac{9199696290174772938005838925}{45300298382939814103327294729} a^{14} - \frac{6279037387292747067558975081}{45300298382939814103327294729} a^{13} + \frac{19261202330608951581246332742}{45300298382939814103327294729} a^{12} - \frac{10948052966398364129905545888}{45300298382939814103327294729} a^{11} + \frac{5693472100927377941004274127}{45300298382939814103327294729} a^{10} + \frac{19933849615727979807029779483}{45300298382939814103327294729} a^{9} + \frac{1846937133374382089769757312}{45300298382939814103327294729} a^{8} + \frac{15137146675885382463947834322}{45300298382939814103327294729} a^{7} - \frac{5375685068934647912911093207}{45300298382939814103327294729} a^{6} - \frac{3354680233596201347868198461}{45300298382939814103327294729} a^{5} + \frac{6461960517238109506447464794}{45300298382939814103327294729} a^{4} + \frac{5845227005109608926750092104}{45300298382939814103327294729} a^{3} + \frac{12175104124085226334213329313}{45300298382939814103327294729} a^{2} + \frac{21955999095364794155036394231}{45300298382939814103327294729} a - \frac{9886296921146967229123509108}{45300298382939814103327294729}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2015111.0193 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1413480448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 337 | Data not computed | ||||||