Properties

Label 16.8.27404580206...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{40}\cdot 5^{10}\cdot 761^{5}$
Root discriminant $122.99$
Ramified primes $2, 5, 761$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1360

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11017777025, 0, -4372363550, 0, 183275435, 0, 97742840, 0, -8613381, 0, -215060, 0, 5879, 0, 170, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 170*x^14 + 5879*x^12 - 215060*x^10 - 8613381*x^8 + 97742840*x^6 + 183275435*x^4 - 4372363550*x^2 + 11017777025)
 
gp: K = bnfinit(x^16 + 170*x^14 + 5879*x^12 - 215060*x^10 - 8613381*x^8 + 97742840*x^6 + 183275435*x^4 - 4372363550*x^2 + 11017777025, 1)
 

Normalized defining polynomial

\( x^{16} + 170 x^{14} + 5879 x^{12} - 215060 x^{10} - 8613381 x^{8} + 97742840 x^{6} + 183275435 x^{4} - 4372363550 x^{2} + 11017777025 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2740458020629184239370240000000000=2^{40}\cdot 5^{10}\cdot 761^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $122.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 761$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3805} a^{12} + \frac{34}{761} a^{10} - \frac{1731}{3805} a^{8} + \frac{365}{761} a^{6} + \frac{1139}{3805} a^{4}$, $\frac{1}{3805} a^{13} + \frac{34}{761} a^{11} - \frac{1731}{3805} a^{9} + \frac{365}{761} a^{7} + \frac{1139}{3805} a^{5}$, $\frac{1}{107889541376239577390936503865885} a^{14} + \frac{10407318940479201627491144466}{107889541376239577390936503865885} a^{12} + \frac{27515206465928747923331365876034}{107889541376239577390936503865885} a^{10} + \frac{13636435481840690850331560404974}{107889541376239577390936503865885} a^{8} + \frac{9862738262010548516623634152724}{107889541376239577390936503865885} a^{6} + \frac{61938289596541023243023061384}{141773378943810219961808809285} a^{4} + \frac{95911087451036419709373867}{341622599864602939667009179} a^{2} + \frac{11653624411616418365391045}{37259757935298349530041737}$, $\frac{1}{107889541376239577390936503865885} a^{15} + \frac{10407318940479201627491144466}{107889541376239577390936503865885} a^{13} + \frac{27515206465928747923331365876034}{107889541376239577390936503865885} a^{11} + \frac{13636435481840690850331560404974}{107889541376239577390936503865885} a^{9} + \frac{9862738262010548516623634152724}{107889541376239577390936503865885} a^{7} + \frac{61938289596541023243023061384}{141773378943810219961808809285} a^{5} + \frac{95911087451036419709373867}{341622599864602939667009179} a^{3} + \frac{11653624411616418365391045}{37259757935298349530041737} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 21365501425.7 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1360:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 65 conjugacy class representatives for t16n1360 are not computed
Character table for t16n1360 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.1948160000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
761Data not computed