Normalized defining polynomial
\( x^{16} - 6 x^{15} + 5 x^{14} + 32 x^{13} - 66 x^{12} + 4 x^{11} + 12 x^{10} + 272 x^{9} - 837 x^{8} + 1226 x^{7} - 217 x^{6} - 1480 x^{5} + 767 x^{4} + 838 x^{3} - 497 x^{2} - 68 x + 46 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(274045802062918423937024=2^{30}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{1}{15} a^{11} - \frac{7}{15} a^{10} - \frac{2}{5} a^{9} - \frac{4}{15} a^{8} - \frac{7}{15} a^{7} - \frac{1}{15} a^{6} + \frac{7}{15} a^{5} + \frac{7}{15} a^{4} + \frac{1}{5} a^{3} - \frac{7}{15} a^{2} + \frac{1}{3} a - \frac{2}{15}$, $\frac{1}{75} a^{14} + \frac{2}{75} a^{13} - \frac{2}{75} a^{12} + \frac{1}{15} a^{11} - \frac{2}{5} a^{10} + \frac{29}{75} a^{9} - \frac{1}{75} a^{8} + \frac{17}{75} a^{7} + \frac{22}{75} a^{6} + \frac{1}{75} a^{5} - \frac{13}{75} a^{3} - \frac{7}{75} a^{2} - \frac{29}{75} a - \frac{1}{25}$, $\frac{1}{11245133087256900} a^{15} + \frac{2704611432689}{3748377695752300} a^{14} - \frac{13693372053731}{937094423938075} a^{13} - \frac{18163471121401}{187418884787615} a^{12} - \frac{110267527057093}{1124513308725690} a^{11} + \frac{618118770704677}{5622566543628450} a^{10} + \frac{2385245050197017}{5622566543628450} a^{9} - \frac{2369419651100299}{5622566543628450} a^{8} + \frac{255994919972679}{3748377695752300} a^{7} + \frac{2631047674347671}{11245133087256900} a^{6} + \frac{444446240030101}{1124513308725690} a^{5} - \frac{89204368733759}{5622566543628450} a^{4} + \frac{3128622075039913}{11245133087256900} a^{3} - \frac{875355215478583}{3748377695752300} a^{2} + \frac{1624776598389401}{5622566543628450} a + \frac{185030092891273}{374837769575230}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2204961.39622 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 83 conjugacy class representatives for t16n1870 are not computed |
| Character table for t16n1870 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 8.4.2372079616.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.12.24.244 | $x^{12} - 8 x^{11} + 4 x^{10} - 8 x^{9} - 14 x^{8} + 8 x^{7} + 8 x^{5} + 16 x^{3} - 8 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $[2, 2, 3]^{6}$ | |
| 761 | Data not computed | ||||||