Normalized defining polynomial
\( x^{16} - 6 x^{15} + 6 x^{14} + 32 x^{13} - 114 x^{12} + 161 x^{11} - 15 x^{10} - 403 x^{9} + 444 x^{8} + 637 x^{7} - 483 x^{6} - 701 x^{5} + 86 x^{4} + 255 x^{3} + 59 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2737511958932953515625=5^{8}\cdot 13^{4}\cdot 19^{2}\cdot 29^{4}\cdot 31^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 19, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{13} a^{11} + \frac{5}{13} a^{10} + \frac{2}{13} a^{9} - \frac{3}{13} a^{8} + \frac{1}{13} a^{7} + \frac{6}{13} a^{6} + \frac{3}{13} a^{5} - \frac{5}{13} a^{4} - \frac{1}{13} a^{3} - \frac{4}{13} a^{2} - \frac{6}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{12} + \frac{3}{13} a^{10} + \frac{3}{13} a^{8} + \frac{1}{13} a^{7} - \frac{1}{13} a^{6} + \frac{6}{13} a^{5} - \frac{2}{13} a^{4} + \frac{1}{13} a^{3} + \frac{1}{13} a^{2} - \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{13} - \frac{2}{13} a^{10} - \frac{3}{13} a^{9} - \frac{3}{13} a^{8} - \frac{4}{13} a^{7} + \frac{1}{13} a^{6} + \frac{2}{13} a^{5} + \frac{3}{13} a^{4} + \frac{4}{13} a^{3} - \frac{5}{13} a^{2} + \frac{6}{13} a - \frac{2}{13}$, $\frac{1}{1131} a^{14} - \frac{20}{1131} a^{13} + \frac{5}{1131} a^{12} + \frac{14}{1131} a^{11} - \frac{323}{1131} a^{10} + \frac{401}{1131} a^{9} + \frac{103}{377} a^{8} + \frac{388}{1131} a^{7} + \frac{229}{1131} a^{6} - \frac{21}{377} a^{5} + \frac{517}{1131} a^{4} + \frac{281}{1131} a^{3} + \frac{515}{1131} a^{2} - \frac{134}{1131} a - \frac{187}{1131}$, $\frac{1}{39151921190811} a^{15} + \frac{502416731}{1186421854267} a^{14} + \frac{673450913944}{39151921190811} a^{13} + \frac{339442410524}{13050640396937} a^{12} - \frac{31123648372}{39151921190811} a^{11} + \frac{576707720138}{3559265562801} a^{10} + \frac{1017486079606}{39151921190811} a^{9} - \frac{126966355786}{1350066247959} a^{8} - \frac{3813790103961}{13050640396937} a^{7} + \frac{170495495969}{39151921190811} a^{6} + \frac{12495121861672}{39151921190811} a^{5} + \frac{321115860305}{1350066247959} a^{4} - \frac{1786316454794}{13050640396937} a^{3} - \frac{2320165202374}{39151921190811} a^{2} - \frac{1062068594491}{3559265562801} a + \frac{12589972067308}{39151921190811}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44270.6822206 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 76 conjugacy class representatives for t16n1116 are not computed |
| Character table for t16n1116 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.309593125.1, 8.4.52321238125.1, 8.4.88830625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |