Normalized defining polynomial
\( x^{16} - 4 x^{15} - 37 x^{14} + 147 x^{13} - 93130 x^{12} - 604947 x^{11} + 2379681 x^{10} + 30799334 x^{9} + 83871983 x^{8} - 43358097 x^{7} - 391932779 x^{6} + 1360249204 x^{5} + 9655116950 x^{4} + 20571597915 x^{3} + 17514522367 x^{2} + 2572687806 x - 1766411567 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2699742028062005762663832012742665627137111010645529=53^{14}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1638.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{89} a^{8} - \frac{2}{89} a^{7} + \frac{24}{89} a^{6} - \frac{12}{89} a^{5} + \frac{26}{89} a^{4} - \frac{23}{89} a^{3} + \frac{14}{89} a^{2} - \frac{1}{89} a - \frac{25}{89}$, $\frac{1}{89} a^{9} + \frac{20}{89} a^{7} + \frac{36}{89} a^{6} + \frac{2}{89} a^{5} + \frac{29}{89} a^{4} - \frac{32}{89} a^{3} + \frac{27}{89} a^{2} - \frac{27}{89} a + \frac{39}{89}$, $\frac{1}{89} a^{10} - \frac{13}{89} a^{7} - \frac{33}{89} a^{6} + \frac{2}{89} a^{5} - \frac{18}{89} a^{4} + \frac{42}{89} a^{3} - \frac{40}{89} a^{2} - \frac{30}{89} a - \frac{34}{89}$, $\frac{1}{89} a^{11} + \frac{30}{89} a^{7} - \frac{42}{89} a^{6} + \frac{4}{89} a^{5} + \frac{24}{89} a^{4} + \frac{17}{89} a^{3} - \frac{26}{89} a^{2} + \frac{42}{89} a + \frac{31}{89}$, $\frac{1}{178} a^{12} - \frac{1}{178} a^{10} - \frac{1}{178} a^{8} - \frac{28}{89} a^{7} - \frac{42}{89} a^{6} - \frac{51}{178} a^{5} + \frac{15}{89} a^{4} - \frac{67}{178} a^{3} + \frac{2}{89} a^{2} + \frac{3}{178} a - \frac{81}{178}$, $\frac{1}{17266} a^{13} - \frac{19}{17266} a^{12} + \frac{61}{17266} a^{11} - \frac{61}{17266} a^{10} + \frac{19}{17266} a^{9} + \frac{33}{17266} a^{8} + \frac{379}{8633} a^{7} - \frac{6343}{17266} a^{6} + \frac{1355}{17266} a^{5} + \frac{597}{17266} a^{4} + \frac{5265}{17266} a^{3} + \frac{543}{17266} a^{2} + \frac{971}{8633} a + \frac{4143}{17266}$, $\frac{1}{2743722794} a^{14} + \frac{36195}{1371861397} a^{13} - \frac{1957682}{1371861397} a^{12} + \frac{5726052}{1371861397} a^{11} + \frac{993020}{1371861397} a^{10} + \frac{5432754}{1371861397} a^{9} + \frac{8010823}{2743722794} a^{8} + \frac{713120903}{2743722794} a^{7} - \frac{427062843}{1371861397} a^{6} + \frac{600187340}{1371861397} a^{5} - \frac{106150614}{1371861397} a^{4} + \frac{683368040}{1371861397} a^{3} - \frac{1213252805}{2743722794} a^{2} + \frac{474225209}{2743722794} a + \frac{1135494167}{2743722794}$, $\frac{1}{4027316604912136645729796420883320090687614934131761166} a^{15} - \frac{329832472491007741269130880973375338983259624}{2013658302456068322864898210441660045343807467065880583} a^{14} + \frac{406287518116006731791061125906793603858267655856}{22625374184899644077133687757771461183638286146807647} a^{13} + \frac{3450993721082275067986029046856281047132882176086855}{2013658302456068322864898210441660045343807467065880583} a^{12} + \frac{1978104307506392561148774473352918444696394299755058}{2013658302456068322864898210441660045343807467065880583} a^{11} - \frac{4579114168628773344388710162359638609605851101377400}{2013658302456068322864898210441660045343807467065880583} a^{10} - \frac{11431906177838617633285616418763047381718640929118793}{4027316604912136645729796420883320090687614934131761166} a^{9} - \frac{13940079568665434884503139175978570385780247134847605}{4027316604912136645729796420883320090687614934131761166} a^{8} + \frac{647611598845881047556663522742812976909580031352196799}{2013658302456068322864898210441660045343807467065880583} a^{7} + \frac{43145583829694617368765419340246392955288730481489326}{2013658302456068322864898210441660045343807467065880583} a^{6} - \frac{836197037073126385528683562985579374377525851278887639}{2013658302456068322864898210441660045343807467065880583} a^{5} - \frac{960229949639894801963199973613051255824983957145569814}{2013658302456068322864898210441660045343807467065880583} a^{4} - \frac{1259542898886590589170119443647640859748250550603632651}{4027316604912136645729796420883320090687614934131761166} a^{3} + \frac{1938011236023527287180037097030402366792348942369143707}{4027316604912136645729796420883320090687614934131761166} a^{2} + \frac{1403860431511103080883278501553297752694840957929499397}{4027316604912136645729796420883320090687614934131761166} a + \frac{163253429706134818914854119654545141626992592905542534}{2013658302456068322864898210441660045343807467065880583}$
Class group and class number
$C_{3}\times C_{12}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1147325462190000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{4717}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{53}, \sqrt{89})\), 8.8.11015272807216227454969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.1 | $x^{8} - 53$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.1 | $x^{8} - 53$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $89$ | 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |