Properties

Label 16.8.26436931289...0625.4
Degree $16$
Signature $[8, 4]$
Discriminant $5^{12}\cdot 101^{8}$
Root discriminant $33.60$
Ramified primes $5, 101$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4.D_4$ (as 16T330)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![11, -4383, 9863, 4989, -17333, -4218, 11063, 5842, -3740, -3148, 601, 509, -8, -26, -12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 12*x^14 - 26*x^13 - 8*x^12 + 509*x^11 + 601*x^10 - 3148*x^9 - 3740*x^8 + 5842*x^7 + 11063*x^6 - 4218*x^5 - 17333*x^4 + 4989*x^3 + 9863*x^2 - 4383*x + 11)
 
gp: K = bnfinit(x^16 - 12*x^14 - 26*x^13 - 8*x^12 + 509*x^11 + 601*x^10 - 3148*x^9 - 3740*x^8 + 5842*x^7 + 11063*x^6 - 4218*x^5 - 17333*x^4 + 4989*x^3 + 9863*x^2 - 4383*x + 11, 1)
 

Normalized defining polynomial

\( x^{16} - 12 x^{14} - 26 x^{13} - 8 x^{12} + 509 x^{11} + 601 x^{10} - 3148 x^{9} - 3740 x^{8} + 5842 x^{7} + 11063 x^{6} - 4218 x^{5} - 17333 x^{4} + 4989 x^{3} + 9863 x^{2} - 4383 x + 11 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2643693128974804931640625=5^{12}\cdot 101^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16802832979596221207606789051629} a^{15} - \frac{3158355528343702652332829776554}{16802832979596221207606789051629} a^{14} + \frac{7176028836550989069475073118327}{16802832979596221207606789051629} a^{13} + \frac{7622878380704752780490642774002}{16802832979596221207606789051629} a^{12} + \frac{8391050559269522229383998516446}{16802832979596221207606789051629} a^{11} + \frac{3102119114336216645943047089111}{16802832979596221207606789051629} a^{10} - \frac{7460785500405485703024657784740}{16802832979596221207606789051629} a^{9} - \frac{3681362343705801423039804295953}{16802832979596221207606789051629} a^{8} - \frac{2750865765982770166811024506601}{16802832979596221207606789051629} a^{7} - \frac{2277484958269654787487552480990}{16802832979596221207606789051629} a^{6} + \frac{4495939029195818287652210209431}{16802832979596221207606789051629} a^{5} - \frac{7288717294794939151300957192696}{16802832979596221207606789051629} a^{4} + \frac{6032616408719130026417130922533}{16802832979596221207606789051629} a^{3} + \frac{8025509386997818991127670300302}{16802832979596221207606789051629} a^{2} + \frac{1349831038336002676211397465444}{16802832979596221207606789051629} a - \frac{318985137285894685585977377680}{16802832979596221207606789051629}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1726522.45782 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.D_4$ (as 16T330):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 23 conjugacy class representatives for $C_2^4.D_4$
Character table for $C_2^4.D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.16098453125.1, 8.4.325188753125.4, 8.4.3219690625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$101$101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.8.6.1$x^{8} - 707 x^{4} + 826281$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$