Normalized defining polynomial
\( x^{16} - 8 x^{15} + 8 x^{14} + 84 x^{13} - 150 x^{12} - 556 x^{11} + 938 x^{10} + 3362 x^{9} - 5172 x^{8} - 10748 x^{7} + 17454 x^{6} + 10916 x^{5} - 19717 x^{4} - 3822 x^{3} - 9984 x^{2} + 17394 x + 9763 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26428481046229354497662569=13^{10}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{12}$, $\frac{1}{36} a^{9} + \frac{1}{18} a^{7} - \frac{1}{9} a^{6} + \frac{1}{18} a^{5} + \frac{2}{9} a^{4} - \frac{7}{36} a^{3} + \frac{2}{9} a^{2} + \frac{7}{36} a + \frac{7}{18}$, $\frac{1}{36} a^{10} - \frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{36} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{1}{4}$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{8} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} + \frac{7}{36} a^{5} - \frac{2}{9} a^{4} + \frac{1}{12} a^{3} + \frac{7}{36} a^{2} - \frac{7}{18} a + \frac{5}{36}$, $\frac{1}{864} a^{12} - \frac{1}{144} a^{11} - \frac{1}{72} a^{10} - \frac{5}{864} a^{9} + \frac{7}{864} a^{8} - \frac{1}{54} a^{7} + \frac{107}{864} a^{6} - \frac{1}{216} a^{5} + \frac{163}{864} a^{4} - \frac{289}{864} a^{3} + \frac{419}{864} a^{2} - \frac{101}{864} a - \frac{323}{864}$, $\frac{1}{864} a^{13} - \frac{5}{864} a^{10} + \frac{1}{864} a^{9} - \frac{11}{432} a^{8} - \frac{37}{864} a^{7} + \frac{7}{432} a^{6} + \frac{91}{864} a^{5} - \frac{151}{864} a^{4} + \frac{389}{864} a^{3} + \frac{277}{864} a^{2} - \frac{137}{864} a + \frac{61}{144}$, $\frac{1}{6664032} a^{14} - \frac{7}{6664032} a^{13} + \frac{541}{3332016} a^{12} - \frac{6401}{6664032} a^{11} - \frac{5273}{555336} a^{10} + \frac{1555}{2221344} a^{9} + \frac{3131}{6664032} a^{8} + \frac{259585}{6664032} a^{7} + \frac{67535}{740448} a^{6} - \frac{410671}{1666008} a^{5} - \frac{101473}{1666008} a^{4} + \frac{67765}{138834} a^{3} - \frac{1360627}{3332016} a^{2} - \frac{2251277}{6664032} a + \frac{3361}{208251}$, $\frac{1}{23037558624} a^{15} + \frac{1721}{23037558624} a^{14} + \frac{3480769}{11518779312} a^{13} + \frac{9869389}{23037558624} a^{12} - \frac{8087809}{959898276} a^{11} - \frac{14622773}{7679186208} a^{10} - \frac{256198555}{23037558624} a^{9} - \frac{871190165}{23037558624} a^{8} - \frac{42199955}{853242912} a^{7} - \frac{2730208097}{11518779312} a^{6} - \frac{101848579}{5759389656} a^{5} - \frac{624700609}{3839593104} a^{4} - \frac{392244767}{5759389656} a^{3} + \frac{1859755573}{23037558624} a^{2} - \frac{1450576835}{11518779312} a - \frac{38037961}{142207152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17569347.9344 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{793}) \), 4.4.48373.1 x2, 4.4.10309.1 x2, \(\Q(\sqrt{13}, \sqrt{61})\), 8.4.5140863842413.2 x2, 8.8.395451064801.1, 8.4.395451064801.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |