Properties

Label 16.8.26428481046...2569.4
Degree $16$
Signature $[8, 4]$
Discriminant $13^{10}\cdot 61^{8}$
Root discriminant $38.80$
Ramified primes $13, 61$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_4\wr C_2$ (as 16T42)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13, -78, 342, 3262, -14124, 21674, -13113, -2594, 6976, -1766, -825, 112, 122, 36, -23, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 23*x^14 + 36*x^13 + 122*x^12 + 112*x^11 - 825*x^10 - 1766*x^9 + 6976*x^8 - 2594*x^7 - 13113*x^6 + 21674*x^5 - 14124*x^4 + 3262*x^3 + 342*x^2 - 78*x + 13)
 
gp: K = bnfinit(x^16 - 2*x^15 - 23*x^14 + 36*x^13 + 122*x^12 + 112*x^11 - 825*x^10 - 1766*x^9 + 6976*x^8 - 2594*x^7 - 13113*x^6 + 21674*x^5 - 14124*x^4 + 3262*x^3 + 342*x^2 - 78*x + 13, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 23 x^{14} + 36 x^{13} + 122 x^{12} + 112 x^{11} - 825 x^{10} - 1766 x^{9} + 6976 x^{8} - 2594 x^{7} - 13113 x^{6} + 21674 x^{5} - 14124 x^{4} + 3262 x^{3} + 342 x^{2} - 78 x + 13 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(26428481046229354497662569=13^{10}\cdot 61^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{366} a^{14} + \frac{7}{122} a^{13} + \frac{19}{183} a^{12} - \frac{83}{366} a^{11} - \frac{12}{61} a^{10} - \frac{7}{366} a^{9} - \frac{65}{366} a^{8} + \frac{59}{366} a^{7} - \frac{35}{122} a^{6} + \frac{35}{122} a^{5} - \frac{10}{61} a^{4} - \frac{43}{366} a^{3} + \frac{71}{183} a^{2} + \frac{76}{183} a + \frac{95}{366}$, $\frac{1}{8926777335478256908050} a^{15} - \frac{1045202658825605623}{1487796222579709484675} a^{14} - \frac{175517392247275414753}{892677733547825690805} a^{13} + \frac{1325422311682923371791}{8926777335478256908050} a^{12} + \frac{191473844010284795607}{2975592445159418969350} a^{11} - \frac{660342859042258342369}{8926777335478256908050} a^{10} - \frac{524156318128727746241}{8926777335478256908050} a^{9} - \frac{73721801342695655524}{892677733547825690805} a^{8} - \frac{779239137951773327953}{2975592445159418969350} a^{7} - \frac{31347702762963255563}{595118489031883793870} a^{6} + \frac{582729040740489647272}{1487796222579709484675} a^{5} - \frac{2082410279494910431214}{4463388667739128454025} a^{4} - \frac{767494703928774555883}{4463388667739128454025} a^{3} + \frac{588873495327965660719}{4463388667739128454025} a^{2} + \frac{3073433077536591550949}{8926777335478256908050} a + \frac{287298362030541538511}{2975592445159418969350}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6419363.9793 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\wr C_2$ (as 16T42):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{793}) \), 4.4.10309.1 x2, 4.4.48373.1 x2, \(\Q(\sqrt{13}, \sqrt{61})\), 8.4.5140863842413.1, 8.4.30419312677.1, 8.8.395451064801.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
$61$61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$