Normalized defining polynomial
\( x^{16} - 2 x^{15} - 45 x^{14} + 335 x^{13} - 280 x^{12} - 7258 x^{11} + 39600 x^{10} - 63598 x^{9} - 222958 x^{8} + 1465935 x^{7} - 3407382 x^{6} + 2268504 x^{5} + 7928120 x^{4} - 24536211 x^{3} + 29571391 x^{2} - 13651434 x - 535357 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26181488684730995417116128593561=89^{5}\cdot 97^{2}\cdot 163^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{97} a^{14} + \frac{31}{97} a^{13} - \frac{46}{97} a^{12} - \frac{44}{97} a^{11} - \frac{24}{97} a^{10} - \frac{48}{97} a^{9} + \frac{27}{97} a^{8} + \frac{25}{97} a^{7} - \frac{6}{97} a^{6} - \frac{22}{97} a^{5} + \frac{20}{97} a^{4} - \frac{30}{97} a^{3} - \frac{14}{97} a^{2} + \frac{30}{97} a - \frac{29}{97}$, $\frac{1}{242464747991983595972466691696692969163738537929} a^{15} + \frac{70668116724553780142769229102574225697842629}{80821582663994531990822230565564323054579512643} a^{14} + \frac{23433704122469947589704212643907374881497656564}{80821582663994531990822230565564323054579512643} a^{13} - \frac{86862402117244506512415674431097822790011491972}{242464747991983595972466691696692969163738537929} a^{12} - \frac{5799168654749089378755952681741813964801191630}{80821582663994531990822230565564323054579512643} a^{11} - \frac{72863080673822380876345208577006411574666283470}{242464747991983595972466691696692969163738537929} a^{10} + \frac{4558008287447396920240137261433080631892790199}{242464747991983595972466691696692969163738537929} a^{9} - \frac{114775507808926682282451804992013114337097578070}{242464747991983595972466691696692969163738537929} a^{8} + \frac{77676659396360073087224493444611911568285461168}{242464747991983595972466691696692969163738537929} a^{7} + \frac{104135511583621577428995973991833854471219510428}{242464747991983595972466691696692969163738537929} a^{6} + \frac{58793808755725086734780001319383334724034379894}{242464747991983595972466691696692969163738537929} a^{5} + \frac{41413358582942761401134677060263530689308447257}{242464747991983595972466691696692969163738537929} a^{4} - \frac{19651008388891415153480494144720906289321280044}{80821582663994531990822230565564323054579512643} a^{3} + \frac{32342491701319692984466512376061788599951534489}{80821582663994531990822230565564323054579512643} a^{2} - \frac{1567122550321678449386607871802941655933790806}{242464747991983595972466691696692969163738537929} a - \frac{724351936224368149874688242524667860857677779}{242464747991983595972466691696692969163738537929}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13069597404.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.62826146729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.12.0.1 | $x^{12} - x + 68$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 163 | Data not computed | ||||||