Normalized defining polynomial
\( x^{16} - x^{15} - 24 x^{14} + 61 x^{13} - 377 x^{12} - 109 x^{11} - 5474 x^{10} - 1389 x^{9} + 283817 x^{8} - 423891 x^{7} - 587974 x^{6} + 2942271 x^{5} - 9646748 x^{4} + 9669233 x^{3} + 14865913 x^{2} - 64829181 x + 67279599 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26181488684730995417116128593561=89^{5}\cdot 97^{2}\cdot 163^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{119} a^{14} + \frac{5}{17} a^{13} - \frac{54}{119} a^{12} - \frac{4}{17} a^{11} - \frac{31}{119} a^{10} + \frac{4}{17} a^{9} - \frac{57}{119} a^{8} - \frac{53}{119} a^{7} - \frac{2}{17} a^{6} + \frac{23}{119} a^{5} - \frac{4}{17} a^{4} + \frac{20}{119} a^{3} + \frac{8}{17} a^{2} + \frac{23}{119} a - \frac{55}{119}$, $\frac{1}{69629631850783346902230397781012962719195329180180813437467} a^{15} - \frac{112858071750687753842477164558387958223681386609396074144}{69629631850783346902230397781012962719195329180180813437467} a^{14} + \frac{10910200906542013249805121946741736323231175240886908946146}{23209877283594448967410132593670987573065109726726937812489} a^{13} + \frac{680485293494181911072594214124330886646244637274332316602}{4095860697104902758954729281236056630540901716481224319851} a^{12} - \frac{29610724002540941822487795261883495976977830333558494577947}{69629631850783346902230397781012962719195329180180813437467} a^{11} + \frac{1582713915982521061845321909948002081930518528786551456922}{4095860697104902758954729281236056630540901716481224319851} a^{10} - \frac{406155063220295845254744723445694595740944365068615536517}{69629631850783346902230397781012962719195329180180813437467} a^{9} + \frac{482931043790017468757034606900113490027704343538698770857}{3315696754799206995344304656238712510437872818103848258927} a^{8} - \frac{3175562120002663719483421704580522014917482097846922590671}{69629631850783346902230397781012962719195329180180813437467} a^{7} - \frac{5718670980323823533283046630543589364422970463094857392552}{23209877283594448967410132593670987573065109726726937812489} a^{6} - \frac{30203943646090628367587081939161319591076835299847008420724}{69629631850783346902230397781012962719195329180180813437467} a^{5} - \frac{11243322211481353147323809518774068026624456525696299613287}{23209877283594448967410132593670987573065109726726937812489} a^{4} + \frac{8676981080176085371485362296039075626263597259397512259438}{69629631850783346902230397781012962719195329180180813437467} a^{3} + \frac{22703614532242776801034957360568240774853042233881915391102}{69629631850783346902230397781012962719195329180180813437467} a^{2} + \frac{2861450629210127140391072828535569926175889678269998473328}{9947090264397620986032913968716137531313618454311544776781} a - \frac{4962559761910569244987294427002256999722187533733923278071}{23209877283594448967410132593670987573065109726726937812489}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14025527576.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.62826146729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.12.0.1 | $x^{12} - x + 68$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 163 | Data not computed | ||||||