Normalized defining polynomial
\( x^{16} - 131 x^{14} + 4947 x^{12} + 731 x^{10} - 150192 x^{9} - 3584998 x^{8} + 9918036 x^{7} + 62552122 x^{6} - 180375228 x^{5} - 63289201 x^{4} + 638329410 x^{3} - 5561915004 x^{2} + 3661444944 x - 620598976 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25960186080802016874638962845712890625=5^{10}\cdot 149^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{228} a^{12} + \frac{13}{228} a^{11} - \frac{1}{228} a^{10} - \frac{3}{19} a^{9} - \frac{10}{57} a^{8} + \frac{13}{114} a^{7} - \frac{23}{76} a^{6} - \frac{85}{228} a^{5} - \frac{1}{57} a^{4} - \frac{65}{228} a^{3} - \frac{113}{228} a^{2} + \frac{25}{114} a + \frac{1}{3}$, $\frac{1}{228} a^{13} - \frac{3}{38} a^{11} + \frac{5}{76} a^{10} - \frac{7}{57} a^{9} - \frac{2}{19} a^{8} + \frac{11}{228} a^{7} - \frac{2}{19} a^{6} - \frac{77}{228} a^{5} - \frac{17}{76} a^{4} + \frac{43}{114} a^{3} - \frac{13}{76} a^{2} - \frac{7}{38} a$, $\frac{1}{75468} a^{14} + \frac{13}{6289} a^{13} - \frac{1}{75468} a^{12} - \frac{1115}{37734} a^{11} + \frac{119}{25156} a^{10} - \frac{1215}{6289} a^{9} - \frac{1623}{25156} a^{8} - \frac{863}{18867} a^{7} - \frac{4982}{18867} a^{6} + \frac{17585}{37734} a^{5} - \frac{3109}{12578} a^{4} - \frac{12047}{37734} a^{3} - \frac{20587}{75468} a^{2} - \frac{11743}{37734} a + \frac{200}{993}$, $\frac{1}{502953849755502068441607405130245931539068665487570352} a^{15} + \frac{87099233413858318921376312499428763128260302297}{41912820812958505703467283760853827628255722123964196} a^{14} + \frac{58614188297498859526042176842686289964051613993151}{167651283251834022813869135043415310513022888495856784} a^{13} - \frac{25789596975047116501048899466164230813471545755837}{41912820812958505703467283760853827628255722123964196} a^{12} - \frac{22676918351160966660527606135307952992577700541352261}{502953849755502068441607405130245931539068665487570352} a^{11} - \frac{8652083698093712009118104147434303329568352134945193}{125738462438875517110401851282561482884767166371892588} a^{10} + \frac{77760788242742478399715792383308690868813818950738667}{502953849755502068441607405130245931539068665487570352} a^{9} + \frac{297920520998893154289221277478605742466123707176481}{41912820812958505703467283760853827628255722123964196} a^{8} - \frac{30105077376072297083170204762514257458939067426153183}{251476924877751034220803702565122965769534332743785176} a^{7} + \frac{24925202787150387125434663516307551689418013128775399}{125738462438875517110401851282561482884767166371892588} a^{6} + \frac{105897438809671371611805652284572881239515928718289269}{251476924877751034220803702565122965769534332743785176} a^{5} - \frac{54979901223054524063673609117428983735292239299578473}{125738462438875517110401851282561482884767166371892588} a^{4} + \frac{28890764636845615824163323229823062292225331564125053}{167651283251834022813869135043415310513022888495856784} a^{3} + \frac{79141881735768990126830756369042976299441598553540667}{251476924877751034220803702565122965769534332743785176} a^{2} + \frac{7611261494630451601588846420806533564825781660030909}{41912820812958505703467283760853827628255722123964196} a + \frac{107119726632870637205690767072243211284976415273407}{1654453453143098909347392780033703722167989031209113}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18629811541500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{745}) \), \(\Q(\sqrt{149}) \), \(\Q(\sqrt{5}) \), 4.4.82698725.1 x2, 4.4.16539745.1 x2, \(\Q(\sqrt{5}, \sqrt{149})\), 8.8.6839079116625625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $149$ | 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 149.8.7.2 | $x^{8} - 596$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |