Normalized defining polynomial
\( x^{16} - 6 x^{15} - 51 x^{14} + 491 x^{13} - 2046 x^{12} - 3267 x^{11} + 86127 x^{10} - 208356 x^{9} - 5272 x^{8} + 382749 x^{7} - 4535462 x^{6} + 7629119 x^{5} - 56895286 x^{4} + 361128255 x^{3} - 875529162 x^{2} + 1153732464 x - 497848761 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25934622137786186512293731859285256849=37^{10}\cdot 149^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{9} a^{11} + \frac{2}{9} a^{10} - \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{1341} a^{12} + \frac{59}{1341} a^{11} + \frac{542}{1341} a^{10} - \frac{391}{1341} a^{9} - \frac{1}{447} a^{8} + \frac{653}{1341} a^{7} + \frac{394}{1341} a^{6} + \frac{538}{1341} a^{5} - \frac{292}{1341} a^{4} + \frac{647}{1341} a^{3} + \frac{145}{1341} a^{2} + \frac{200}{447} a - \frac{45}{149}$, $\frac{1}{6705} a^{13} - \frac{12}{745} a^{11} - \frac{1228}{6705} a^{10} - \frac{556}{2235} a^{9} - \frac{667}{2235} a^{8} - \frac{13}{149} a^{7} + \frac{278}{2235} a^{6} - \frac{1042}{6705} a^{5} + \frac{793}{2235} a^{4} - \frac{1523}{6705} a^{3} + \frac{346}{1341} a^{2} - \frac{1684}{6705} a + \frac{68}{2235}$, $\frac{1}{60345} a^{14} - \frac{1}{20115} a^{13} + \frac{4}{20115} a^{12} + \frac{1706}{60345} a^{11} + \frac{3727}{20115} a^{10} - \frac{716}{2235} a^{9} - \frac{7999}{20115} a^{8} - \frac{8777}{20115} a^{7} - \frac{12139}{60345} a^{6} + \frac{797}{4023} a^{5} + \frac{3776}{12069} a^{4} - \frac{18871}{60345} a^{3} - \frac{5119}{60345} a^{2} + \frac{4147}{20115} a + \frac{1982}{6705}$, $\frac{1}{2800665859480130702942634606487242747636745964419717185} a^{15} + \frac{477345630740973513454134806943766720637864590879}{311185095497792300326959400720804749737416218268857465} a^{14} - \frac{19215901473249597866695369138867489982076716863313}{933555286493376900980878202162414249212248654806572395} a^{13} + \frac{715133664102036802346532398418074653659185869007639}{2800665859480130702942634606487242747636745964419717185} a^{12} - \frac{4021368081276028423777885839562015272525354965847184}{103728365165930766775653133573601583245805406089619155} a^{11} + \frac{6640825696640661153530243371668573198834490872385877}{103728365165930766775653133573601583245805406089619155} a^{10} - \frac{215722238436912560019344335833402975176936479572101296}{933555286493376900980878202162414249212248654806572395} a^{9} - \frac{6988903622371629521139927216424767800348803068792433}{186711057298675380196175640432482849842449730961314479} a^{8} - \frac{211011060608140577035126864076656065483002888613726058}{2800665859480130702942634606487242747636745964419717185} a^{7} - \frac{1261030242494080856919158069244377124396040429686738}{3841791302441880250950116058281540120215015040356265} a^{6} + \frac{1304284259867314497261911436231146796896696167267246033}{2800665859480130702942634606487242747636745964419717185} a^{5} - \frac{659990860494921298178903099725427724943937477035067122}{2800665859480130702942634606487242747636745964419717185} a^{4} + \frac{664419288183691270805345927142921842976447747151333784}{2800665859480130702942634606487242747636745964419717185} a^{3} + \frac{948289171422934652490217378810291309436651087411609}{2305074781465128150570069634968924072129009024213759} a^{2} - \frac{221207016658202292417911268327575361639307012381777}{1115358765225062008340356274984963260707585011716335} a + \frac{11788518687779878053463390478481188651056946402399348}{103728365165930766775653133573601583245805406089619155}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2129463444270 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{149}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{5513}) \), 4.4.821437.1 x2, 4.4.203981.1 x2, \(\Q(\sqrt{37}, \sqrt{149})\), 8.8.923744721862561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 149 | Data not computed | ||||||