Normalized defining polynomial
\( x^{16} - 2 x^{15} - 13 x^{14} + 9 x^{13} - 817 x^{12} + 461 x^{11} + 5657 x^{10} + 17212 x^{9} + 235026 x^{8} + 272440 x^{7} - 255115 x^{6} - 7489970 x^{5} - 22529999 x^{4} - 33994711 x^{3} - 28965335 x^{2} + 34884977 x + 27895267 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258930158322830089457985795017=17^{15}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{72628} a^{14} - \frac{3475}{18157} a^{13} + \frac{363}{36314} a^{12} - \frac{2819}{72628} a^{11} + \frac{6113}{72628} a^{10} + \frac{5993}{36314} a^{9} + \frac{2521}{36314} a^{8} + \frac{6118}{18157} a^{7} - \frac{2717}{36314} a^{6} - \frac{8246}{18157} a^{5} - \frac{2567}{72628} a^{4} - \frac{14095}{36314} a^{3} - \frac{2943}{36314} a^{2} + \frac{8397}{72628} a - \frac{6153}{72628}$, $\frac{1}{370139751278135222358119429002444713672798086394812584} a^{15} + \frac{1621695981435394086480886102873441086605335418951}{370139751278135222358119429002444713672798086394812584} a^{14} - \frac{2589184619580017932237326703379743750872993671614707}{185069875639067611179059714501222356836399043197406292} a^{13} - \frac{21978962651530020996964929388743305801217515056893021}{370139751278135222358119429002444713672798086394812584} a^{12} - \frac{35057187056655013057492648337987365425251110669049357}{185069875639067611179059714501222356836399043197406292} a^{11} - \frac{18171023125320934891128580409756564265056706152566609}{370139751278135222358119429002444713672798086394812584} a^{10} + \frac{2519779912085328872182322252643196358238167910877675}{46267468909766902794764928625305589209099760799351573} a^{9} + \frac{15055263328637923542141647417872649413960686681664510}{46267468909766902794764928625305589209099760799351573} a^{8} - \frac{60766779464772241949683970173204451227714715661668175}{185069875639067611179059714501222356836399043197406292} a^{7} + \frac{46371975029724405365152179869615520940996567438723505}{185069875639067611179059714501222356836399043197406292} a^{6} - \frac{107582840032903075708343628010493243936683684550412213}{370139751278135222358119429002444713672798086394812584} a^{5} - \frac{76058338618113317195085778143031975676291726199551519}{370139751278135222358119429002444713672798086394812584} a^{4} - \frac{7385788300519111587724978506221796519079896024432669}{185069875639067611179059714501222356836399043197406292} a^{3} - \frac{140389895831033474719934214566433713983374523609593313}{370139751278135222358119429002444713672798086394812584} a^{2} - \frac{13193585606037625616600189010813596606288654025904111}{92534937819533805589529857250611178418199521598703146} a - \frac{172716309516669563925606003417587031987450365386451987}{370139751278135222358119429002444713672798086394812584}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66056272.4874 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||