Normalized defining polynomial
\( x^{16} - 6 x^{15} + 19 x^{14} - 80 x^{13} - 1169 x^{12} + 1642 x^{11} + 6995 x^{10} + 44662 x^{9} + 256954 x^{8} + 526530 x^{7} + 1144659 x^{6} + 1017904 x^{5} - 478367 x^{4} - 1128470 x^{3} - 16468792 x^{2} - 5820344 x + 22064131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258930158322830089457985795017=17^{15}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{268} a^{13} - \frac{7}{67} a^{12} - \frac{10}{67} a^{11} - \frac{10}{67} a^{10} - \frac{13}{67} a^{9} - \frac{6}{67} a^{8} - \frac{51}{268} a^{7} - \frac{9}{134} a^{6} - \frac{7}{268} a^{5} + \frac{9}{134} a^{4} + \frac{91}{268} a^{3} - \frac{4}{67} a^{2} + \frac{25}{268} a - \frac{15}{67}$, $\frac{1}{536} a^{14} - \frac{1}{536} a^{13} - \frac{59}{536} a^{12} + \frac{43}{268} a^{11} - \frac{15}{134} a^{10} - \frac{11}{67} a^{9} - \frac{29}{536} a^{8} - \frac{55}{536} a^{7} - \frac{3}{67} a^{6} + \frac{97}{536} a^{5} + \frac{27}{134} a^{4} + \frac{163}{536} a^{3} + \frac{49}{134} a^{2} + \frac{79}{536} a + \frac{55}{536}$, $\frac{1}{462493910259713793504465736026767245093364136150008} a^{15} + \frac{44058016062871199425249959497954231842422529648}{57811738782464224188058217003345905636670517018751} a^{14} + \frac{141398094371936931735123728306648736302647077133}{115623477564928448376116434006691811273341034037502} a^{13} + \frac{17075539931313920081908881525313473365387714620731}{462493910259713793504465736026767245093364136150008} a^{12} + \frac{4050902241608928448469950733939602596039619034571}{17788227317681299750171759077952586349744774467308} a^{11} - \frac{3108072020293632462191344818949608552285341007465}{57811738782464224188058217003345905636670517018751} a^{10} - \frac{80503156912709736542888769498739495258552468188461}{462493910259713793504465736026767245093364136150008} a^{9} - \frac{12401143549178190646592001255750168782678455427350}{57811738782464224188058217003345905636670517018751} a^{8} - \frac{57486331692517422476824032896057696785133407587883}{462493910259713793504465736026767245093364136150008} a^{7} + \frac{115171152639491256811865903670595152666858506222373}{462493910259713793504465736026767245093364136150008} a^{6} + \frac{132065702752681452104005864270166016336745341885301}{462493910259713793504465736026767245093364136150008} a^{5} + \frac{180177873073778695693049664085504787982802010954159}{462493910259713793504465736026767245093364136150008} a^{4} + \frac{116087184341036495439762952767916285991332524706143}{462493910259713793504465736026767245093364136150008} a^{3} - \frac{152852595134237232984405410813219085052953884457293}{462493910259713793504465736026767245093364136150008} a^{2} - \frac{52047049340378457080871528168857319545117016202309}{231246955129856896752232868013383622546682068075004} a + \frac{67113865183369885446396328484765203393910919707771}{462493910259713793504465736026767245093364136150008}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 127694604.371 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||