Normalized defining polynomial
\( x^{16} - 4 x^{15} + 16 x^{14} - 98 x^{13} - 169 x^{12} + 115 x^{11} + 577 x^{10} + 17140 x^{9} - 16387 x^{8} + 146145 x^{7} - 267734 x^{6} - 971393 x^{5} + 4095607 x^{4} - 16651844 x^{3} - 15288526 x^{2} + 70702018 x + 11279467 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258930158322830089457985795017=17^{15}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{12989819896620557660964924028832967008286554961935900960081} a^{15} + \frac{5747708085420257308374135258944244830766170164437252163224}{12989819896620557660964924028832967008286554961935900960081} a^{14} - \frac{3543889689760933209059402208568696338644134228231045282219}{12989819896620557660964924028832967008286554961935900960081} a^{13} + \frac{5911409469667283559666350082643866583210892994063902686396}{12989819896620557660964924028832967008286554961935900960081} a^{12} - \frac{1462806530445609880973635024310393286412954109532134730618}{12989819896620557660964924028832967008286554961935900960081} a^{11} - \frac{4841845268001264387062499749468658125415044624610133837354}{12989819896620557660964924028832967008286554961935900960081} a^{10} + \frac{3719542667250509876264431012279121373763228454384475423806}{12989819896620557660964924028832967008286554961935900960081} a^{9} - \frac{1363577416705679301718699390406342429432567763821525677948}{12989819896620557660964924028832967008286554961935900960081} a^{8} - \frac{4512576181288643062709106345174944923836461804047237509088}{12989819896620557660964924028832967008286554961935900960081} a^{7} + \frac{3532668777893694791010471140717871793848443953666329756811}{12989819896620557660964924028832967008286554961935900960081} a^{6} - \frac{2131939316348627345895445395833188979808922910339338182423}{12989819896620557660964924028832967008286554961935900960081} a^{5} + \frac{5515865103378299834890650120987267367780403101486490771465}{12989819896620557660964924028832967008286554961935900960081} a^{4} - \frac{5695689007518167033944438786782564221321096797879230268236}{12989819896620557660964924028832967008286554961935900960081} a^{3} + \frac{28148442586082893550987821127346708788710386971176865317}{12989819896620557660964924028832967008286554961935900960081} a^{2} - \frac{1818504435307215588600701684331356517965630546877642383599}{12989819896620557660964924028832967008286554961935900960081} a + \frac{1491831632990557480275634830751279133516047387521244892697}{12989819896620557660964924028832967008286554961935900960081}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93751163.0029 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||