Normalized defining polynomial
\( x^{16} + 212 x^{14} - 508 x^{13} + 5384 x^{12} - 16080 x^{11} - 936609 x^{10} + 4385924 x^{9} - 34332018 x^{8} + 59677972 x^{7} + 458923898 x^{6} - 3537270704 x^{5} + 13345340432 x^{4} + 7085774092 x^{3} - 116425745573 x^{2} + 49037720024 x + 217181440849 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(255573021657714643907277003525390625=5^{10}\cdot 29^{6}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{3}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{16} a^{5} - \frac{5}{16} a^{4} + \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{16} a + \frac{1}{16}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{10} + \frac{1}{16} a^{9} + \frac{11}{64} a^{8} - \frac{1}{8} a^{7} - \frac{1}{64} a^{6} - \frac{1}{4} a^{5} + \frac{1}{64} a^{4} - \frac{1}{16} a^{3} - \frac{19}{64} a^{2} - \frac{1}{8} a - \frac{23}{64}$, $\frac{1}{256} a^{13} + \frac{1}{256} a^{12} - \frac{1}{128} a^{11} + \frac{1}{128} a^{10} - \frac{49}{256} a^{9} + \frac{35}{256} a^{8} - \frac{41}{256} a^{7} - \frac{49}{256} a^{6} - \frac{15}{256} a^{5} - \frac{67}{256} a^{4} + \frac{105}{256} a^{3} - \frac{27}{256} a^{2} + \frac{65}{256} a - \frac{87}{256}$, $\frac{1}{1024} a^{14} - \frac{1}{512} a^{13} - \frac{5}{1024} a^{12} + \frac{1}{128} a^{11} - \frac{55}{1024} a^{10} + \frac{27}{512} a^{9} + \frac{55}{512} a^{8} - \frac{27}{512} a^{7} - \frac{31}{256} a^{6} + \frac{53}{512} a^{5} + \frac{153}{512} a^{4} - \frac{171}{512} a^{3} - \frac{247}{512} a^{2} - \frac{77}{512} a - \frac{123}{1024}$, $\frac{1}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{15} - \frac{17114371743962543471297414236535173780079851012058848591918020137551598379}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{14} - \frac{71847951998922185045676745742115824578750626488744596487923570214610670755}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{13} + \frac{124742649724316441611862426902203781237191208121575527624164403936087039109}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{12} + \frac{923086166452788624544999326157578646766648359774617051131106853169093228385}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{11} + \frac{221972375176265972792483898178317149794936272138257180170416434279595026917}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a^{10} + \frac{391079274440477317220857259933127260318212121447624764758174157638302671719}{4668952740314550005130740084699648799806144553201389211712136555366164239872} a^{9} + \frac{1046375603079369018480475591458978528694272019983378731502316539518268843151}{9337905480629100010261480169399297599612289106402778423424273110732328479744} a^{8} + \frac{3135996091119903558385307813121800251335722114569136971273623168228581784781}{18675810961258200020522960338798595199224578212805556846848546221464656959488} a^{7} + \frac{3840167347852933863650830187916287115593614663204934720602460132299752178763}{18675810961258200020522960338798595199224578212805556846848546221464656959488} a^{6} - \frac{219153907633798449137068437446890606519199448772590839175954479182042429079}{4668952740314550005130740084699648799806144553201389211712136555366164239872} a^{5} - \frac{2163651175165332709692042282572032321184779935551709978187509657206978446749}{4668952740314550005130740084699648799806144553201389211712136555366164239872} a^{4} + \frac{1265520915116709678929612231010997780560680494275650231486715224468088612349}{4668952740314550005130740084699648799806144553201389211712136555366164239872} a^{3} - \frac{2434148126415518597656434781150920606563159255246405993868099465352328979395}{9337905480629100010261480169399297599612289106402778423424273110732328479744} a^{2} - \frac{6986663156208847711138012969127707575460149875608488423032909555559914336961}{37351621922516400041045920677597190398449156425611113693697092442929313918976} a - \frac{13171973904755828225386262823408269140961406435644142785082030032741133904413}{37351621922516400041045920677597190398449156425611113693697092442929313918976}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320078741386 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 4.4.725.1, 4.4.64525.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |