Normalized defining polynomial
\( x^{16} - 5 x^{15} - 99 x^{14} - 319 x^{13} - 19523 x^{12} + 121886 x^{11} + 840025 x^{10} + 5075165 x^{9} + 122313650 x^{8} - 473699896 x^{7} + 2616789777 x^{6} - 15749698812 x^{5} + 16404250745 x^{4} - 69425863392 x^{3} + 252708127180 x^{2} + 184196436709 x - 129803237261 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(255573021657714643907277003525390625=5^{10}\cdot 29^{6}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{15} + \frac{1251747289846270943284377984722758902479033815960440737036819949540229837259300431652064584}{10396386327126166372628906613712322898156040976039973278918649456586933522722173333881755911} a^{14} + \frac{1970672778606363084552931623828147634806439956303780840322015067167259617143671847709314118}{10396386327126166372628906613712322898156040976039973278918649456586933522722173333881755911} a^{13} + \frac{7468678656223831099351395404368853549132111413281535756358514700609400485485392916915740051}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{12} + \frac{2410932899360631327156921902123665111455321461618473715220228126731270447136383233913429130}{10396386327126166372628906613712322898156040976039973278918649456586933522722173333881755911} a^{11} + \frac{48823715259857594472026057567520780877997414755960309478871113411165486401567660468581683}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{10} + \frac{1286517645517359423146550192813002551075195803631389540630570011101210191451057827504075579}{20792772654252332745257813227424645796312081952079946557837298913173867045444346667763511822} a^{9} - \frac{6801279616406735551601385340809580474992103456833858634011641129890026863791853169703923577}{20792772654252332745257813227424645796312081952079946557837298913173867045444346667763511822} a^{8} + \frac{9668130077711242265280077543563846011255424575432186767093787881112953491003830995507069575}{20792772654252332745257813227424645796312081952079946557837298913173867045444346667763511822} a^{7} - \frac{7121973128218347675844211138466389544922623186000669650322365189299949975332978175131146989}{20792772654252332745257813227424645796312081952079946557837298913173867045444346667763511822} a^{6} - \frac{3424940789096431018789658736425129060832682234760738136172956778624913781023388067803058631}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{5} + \frac{15503555213592759430952398232984671154832104463069161795109422447462991809813813300531892213}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{4} - \frac{20293645026404741924879328061690052335899756723259732040186023832978131013716212711898574949}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a^{3} - \frac{538690293854421829271685558281424514935580671279370257682396495805544748274104812797698298}{10396386327126166372628906613712322898156040976039973278918649456586933522722173333881755911} a^{2} + \frac{13828877038324187566781278081541444742512264370178761754782138042755468965091873511993366619}{41585545308504665490515626454849291592624163904159893115674597826347734090888693335527023644} a - \frac{1667503683327707115267959618806451253866646641180595433886389959728129199201945569452196657}{10396386327126166372628906613712322898156040976039973278918649456586933522722173333881755911}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 305658893134 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 4.4.2225.1, 4.4.64525.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |