Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 2974 x^{13} - 264473 x^{12} + 795750 x^{11} - 49905603 x^{10} - 35476954 x^{9} - 111581072 x^{8} + 12241189350 x^{7} + 316573419487 x^{6} + 371149914965 x^{5} + 332497946616 x^{4} - 33962432992424 x^{3} - 230531059041744 x^{2} + 709344561065266 x - 463451459871559 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25518669979516247217450329195440215991007686841=41^{15}\cdot 71^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $795.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} + \frac{2}{23} a^{12} + \frac{7}{23} a^{11} - \frac{11}{23} a^{10} + \frac{3}{23} a^{9} - \frac{8}{23} a^{8} + \frac{11}{23} a^{7} - \frac{2}{23} a^{6} - \frac{5}{23} a^{5} - \frac{10}{23} a^{4} + \frac{2}{23} a^{3} + \frac{3}{23} a^{2} + \frac{2}{23} a + \frac{5}{23}$, $\frac{1}{116219} a^{14} + \frac{770}{116219} a^{13} - \frac{54278}{116219} a^{12} + \frac{55988}{116219} a^{11} + \frac{4297}{116219} a^{10} + \frac{41833}{116219} a^{9} - \frac{54525}{116219} a^{8} + \frac{40485}{116219} a^{7} + \frac{337}{5053} a^{6} - \frac{29127}{116219} a^{5} - \frac{44800}{116219} a^{4} - \frac{29764}{116219} a^{3} + \frac{11897}{116219} a^{2} + \frac{1242}{5053} a - \frac{55431}{116219}$, $\frac{1}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{15} - \frac{13744251236135093488392389310298501329013665557066559559690894655471768170954148341483262692885713596}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{14} + \frac{60905867831003163323729643678019437890517118804752959744957686815083404465461507798382560105318898636595}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{13} - \frac{1001059181937947681207346014652608633951842006607340183093222886153446059808728812754595034371030032639517}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{12} + \frac{28385092305619040006205671795492569685280106473011140891623096761033959127644927140044371917750162119176}{95049770915691666067813014352058725297346737367605610507602578563406606427977174493869399016734688963067} a^{11} + \frac{1671926461050571382752340515882277941434243668286085983663675866970057820636196668007089819347407936024658}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{10} - \frac{1617726115394388801212349420282027081719721615021519949298147929803581929925917882035513219226799235377528}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{9} + \frac{1165928532006474979439968214590172937091672567843206540646681802816823725119094325362198962818136245621887}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{8} + \frac{910944635777762073429094429780822802232298885234225712216028346693296970090835340452549852920593174462230}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{7} + \frac{1636710571930898025524057214246121023159426608528209761937608827541627312937608820188870021174292142323413}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{6} + \frac{99168407656520696575278043015062465087367668313936945071543843184994667603744136372062823401501369571500}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{5} + \frac{24403870420048822781811797532029925934046863326358379539932838443499814899558875021352806871669506303429}{152906153212199636717786153522877079826166490547887286468751974210697584253702411142311641896486238766673} a^{4} + \frac{1915998615607074787931345584908568129439176110709970509971799515029936362655516702797747820056004354597}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{3} + \frac{1534670155422457160907991461406423927986945809848897327955752814479836427238543340261053858865005442195402}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a^{2} + \frac{172505029294874389876564366377013949459366191643926763897581075930657260606146651415636457093536600581343}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479} a + \frac{907405955573525066138223617549609451121981013015812206664634751743295876640067309008868067219990209199478}{3516841523880591644509081531026172836001829282601407588781295406846044437835155456273167763619183491633479}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222832973520000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.4949033481250603961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 71 | Data not computed | ||||||