Normalized defining polynomial
\( x^{16} - 5 x^{15} + 57 x^{14} - 168 x^{13} + 384 x^{12} + 104 x^{11} - 5853 x^{10} - 5480 x^{9} - 18498 x^{8} - 817 x^{7} + 133161 x^{6} + 239050 x^{5} + 15628 x^{4} - 410800 x^{3} - 444159 x^{2} - 162807 x - 19531 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25023102747484871044535572441=97^{2}\cdot 277^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2229695853437577899456561957792408206702676699} a^{15} - \frac{152111862358099408820885070148286238335154122}{2229695853437577899456561957792408206702676699} a^{14} - \frac{482415351856525411883781594448351642970271708}{2229695853437577899456561957792408206702676699} a^{13} + \frac{613028607507773602350448688039071005390439374}{2229695853437577899456561957792408206702676699} a^{12} + \frac{656696180481597655075403113034914139198979238}{2229695853437577899456561957792408206702676699} a^{11} + \frac{395394364503438016621749816037845012145293359}{2229695853437577899456561957792408206702676699} a^{10} - \frac{240548507169772966653002518177688576312314530}{2229695853437577899456561957792408206702676699} a^{9} - \frac{366783627617584946158863664903175161291034765}{2229695853437577899456561957792408206702676699} a^{8} - \frac{940522040203678782255960174090165778874415296}{2229695853437577899456561957792408206702676699} a^{7} - \frac{640037793335812851017943258996934196616503499}{2229695853437577899456561957792408206702676699} a^{6} - \frac{198725801171083737478836028984822936872237809}{2229695853437577899456561957792408206702676699} a^{5} + \frac{72187602110380940572243977516899574818666433}{2229695853437577899456561957792408206702676699} a^{4} + \frac{881650554740929076146846612657139491071622828}{2229695853437577899456561957792408206702676699} a^{3} + \frac{1021831773075866016862339602701771841333135298}{2229695853437577899456561957792408206702676699} a^{2} - \frac{1095865598464149564223266009047623447702429501}{2229695853437577899456561957792408206702676699} a + \frac{787019699367365229535035780269621652131277998}{2229695853437577899456561957792408206702676699}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118054180.715 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.Q_8.C_6$ (as 16T732):
| A solvable group of order 384 |
| The 30 conjugacy class representatives for $C_2^3.Q_8.C_6$ |
| Character table for $C_2^3.Q_8.C_6$ is not computed |
Intermediate fields
| 4.4.76729.1, 8.8.5887339441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.12.0.1 | $x^{12} - x + 68$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 277 | Data not computed | ||||||