Normalized defining polynomial
\( x^{16} - 2 x^{15} - 32 x^{14} + 71 x^{13} - 6102 x^{12} + 27466 x^{11} + 146765 x^{10} - 790746 x^{9} + 10245030 x^{8} - 67215741 x^{7} - 113711176 x^{6} + 1810848260 x^{5} - 3185922987 x^{4} - 8754113842 x^{3} + 36703872896 x^{2} - 34702486496 x - 11574258736 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(249686282242731792647174886492450339042241=37^{12}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $386.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{332} a^{14} - \frac{19}{83} a^{13} - \frac{23}{83} a^{12} - \frac{41}{332} a^{11} - \frac{13}{83} a^{10} + \frac{43}{166} a^{9} + \frac{53}{332} a^{8} + \frac{5}{83} a^{7} - \frac{53}{166} a^{6} + \frac{55}{332} a^{5} - \frac{5}{166} a^{4} - \frac{14}{83} a^{3} + \frac{37}{332} a^{2} - \frac{23}{83} a + \frac{6}{83}$, $\frac{1}{1483064288838206130627594112159997854574456613470133532539364721635224536} a^{15} - \frac{23219056825121797972492819629390362410301112313444546244833201855291}{370766072209551532656898528039999463643614153367533383134841180408806134} a^{14} - \frac{33386180853047183985400708265226899296762892370200832330607062248337334}{185383036104775766328449264019999731821807076683766691567420590204403067} a^{13} + \frac{1051913885432273829511346887279110502733908657063559770828824079031089}{6650512506000924352590108126278017285087249387758446334257240904193832} a^{12} - \frac{157224859773005432669181865606998633421340838632471212373783110359722759}{370766072209551532656898528039999463643614153367533383134841180408806134} a^{11} + \frac{190544682885073849816377163070469943381384846846185696264661428383269461}{741532144419103065313797056079998927287228306735066766269682360817612268} a^{10} + \frac{695087421490684871769798144416220894786887484931907343165079261706953041}{1483064288838206130627594112159997854574456613470133532539364721635224536} a^{9} - \frac{107490739363992415479575696365666150938454789176606943040395942685029799}{370766072209551532656898528039999463643614153367533383134841180408806134} a^{8} + \frac{98835769392525941602455697404580107939936735690683009350191334019581603}{741532144419103065313797056079998927287228306735066766269682360817612268} a^{7} - \frac{688701715465084765806736129637928728124166542241582803236676567993986041}{1483064288838206130627594112159997854574456613470133532539364721635224536} a^{6} + \frac{58974816832286818515715467146085533196147869946624504398056788523562873}{741532144419103065313797056079998927287228306735066766269682360817612268} a^{5} - \frac{48343884418718977991758978137357583223960309368575722415826151426669447}{185383036104775766328449264019999731821807076683766691567420590204403067} a^{4} + \frac{99169134644970124559536422573141838292245359967194166748479267350637789}{1483064288838206130627594112159997854574456613470133532539364721635224536} a^{3} + \frac{97500485482936061614864847199883362912963412727151906320113274656112753}{370766072209551532656898528039999463643614153367533383134841180408806134} a^{2} + \frac{35342522292758924196489668679595879713709905239040524442982679574081117}{185383036104775766328449264019999731821807076683766691567420590204403067} a - \frac{67630663731829412643752483307919189899176530636366317102186581617534700}{185383036104775766328449264019999731821807076683766691567420590204403067}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135707488387000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{37}) \), 4.4.68921.1, 4.4.94352849.1, \(\Q(\sqrt{37}, \sqrt{41})\), 8.8.8902460114416801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $41$ | 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.1 | $x^{8} - 41$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |