Normalized defining polynomial
\( x^{16} - x^{15} - 56 x^{14} + 144 x^{13} + 660 x^{12} - 2215 x^{11} - 2505 x^{10} + 13816 x^{9} - 3836 x^{8} - 30580 x^{7} + 27691 x^{6} + 12597 x^{5} - 20056 x^{4} + 5492 x^{3} + 4616 x^{2} + 1723 x + 2797 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24292037884309209334711647701449=61^{2}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{10} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a$, $\frac{1}{1164} a^{12} - \frac{89}{1164} a^{11} + \frac{119}{1164} a^{10} - \frac{26}{291} a^{9} + \frac{37}{582} a^{8} - \frac{37}{291} a^{7} + \frac{35}{291} a^{6} + \frac{20}{97} a^{5} + \frac{19}{97} a^{4} + \frac{53}{194} a^{3} + \frac{109}{388} a^{2} - \frac{89}{388} a - \frac{307}{1164}$, $\frac{1}{1164} a^{13} + \frac{55}{1164} a^{11} + \frac{11}{1164} a^{10} + \frac{65}{582} a^{9} + \frac{3}{97} a^{8} - \frac{19}{97} a^{7} - \frac{26}{291} a^{6} + \frac{9}{194} a^{5} - \frac{57}{194} a^{4} + \frac{37}{388} a^{3} - \frac{22}{97} a^{2} - \frac{499}{1164} a + \frac{31}{1164}$, $\frac{1}{1164} a^{14} - \frac{41}{1164} a^{11} - \frac{13}{1164} a^{10} - \frac{16}{291} a^{9} - \frac{56}{291} a^{8} - \frac{28}{291} a^{7} - \frac{20}{291} a^{6} - \frac{13}{97} a^{5} + \frac{125}{388} a^{4} + \frac{24}{97} a^{3} + \frac{35}{291} a^{2} + \frac{457}{1164} a - \frac{575}{1164}$, $\frac{1}{133994889993210667464} a^{15} - \frac{4687410355078807}{11166240832767555622} a^{14} - \frac{5912631117806833}{16749361249151333433} a^{13} - \frac{8915093487288761}{66997444996605333732} a^{12} - \frac{2462232870429555103}{66997444996605333732} a^{11} + \frac{449222711966939035}{44664963331070222488} a^{10} - \frac{337543608242272323}{5583120416383777811} a^{9} - \frac{2051600563298417281}{16749361249151333433} a^{8} - \frac{611336880046820112}{5583120416383777811} a^{7} - \frac{173688523591527155}{5583120416383777811} a^{6} + \frac{11076766529731995037}{44664963331070222488} a^{5} + \frac{936354585942979239}{11166240832767555622} a^{4} - \frac{7855550962720421918}{16749361249151333433} a^{3} - \frac{32140310522599243699}{66997444996605333732} a^{2} + \frac{7902436610154140889}{22332481665535111244} a - \frac{1229450225027936107}{44664963331070222488}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5218188605.98 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |