Properties

Label 16.8.24292037884...1449.1
Degree $16$
Signature $[8, 4]$
Discriminant $61^{2}\cdot 97^{14}$
Root discriminant $91.54$
Ramified primes $61, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1194

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-326993, 400013, -219331, -181208, 770667, -823539, 365820, -27200, -56010, 34388, -4562, -3482, 1059, 134, -58, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 58*x^14 + 134*x^13 + 1059*x^12 - 3482*x^11 - 4562*x^10 + 34388*x^9 - 56010*x^8 - 27200*x^7 + 365820*x^6 - 823539*x^5 + 770667*x^4 - 181208*x^3 - 219331*x^2 + 400013*x - 326993)
 
gp: K = bnfinit(x^16 - 2*x^15 - 58*x^14 + 134*x^13 + 1059*x^12 - 3482*x^11 - 4562*x^10 + 34388*x^9 - 56010*x^8 - 27200*x^7 + 365820*x^6 - 823539*x^5 + 770667*x^4 - 181208*x^3 - 219331*x^2 + 400013*x - 326993, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 58 x^{14} + 134 x^{13} + 1059 x^{12} - 3482 x^{11} - 4562 x^{10} + 34388 x^{9} - 56010 x^{8} - 27200 x^{7} + 365820 x^{6} - 823539 x^{5} + 770667 x^{4} - 181208 x^{3} - 219331 x^{2} + 400013 x - 326993 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24292037884309209334711647701449=61^{2}\cdot 97^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $91.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $61, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{2}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{89750968800177289916032324017496904799} a^{15} - \frac{1081496113016070231170360068298337586}{29916989600059096638677441339165634933} a^{14} + \frac{5589934610340925173120032141740914281}{89750968800177289916032324017496904799} a^{13} - \frac{36654731596534662386753744800805868}{3324109955562121848741937926573959437} a^{12} - \frac{1626903828677980352584271631681356947}{29916989600059096638677441339165634933} a^{11} - \frac{23806103372548859840455244649478528931}{89750968800177289916032324017496904799} a^{10} - \frac{645760437230929032427044038901572536}{29916989600059096638677441339165634933} a^{9} + \frac{21029656846138628459105500271882765138}{89750968800177289916032324017496904799} a^{8} - \frac{18412849496226522403255352888845558436}{89750968800177289916032324017496904799} a^{7} - \frac{19678061863215761056940736491876866}{264752120354505279988295941054563141} a^{6} - \frac{3840654349722939271755332125686894500}{29916989600059096638677441339165634933} a^{5} - \frac{289418823695810914227927457637601446}{29916989600059096638677441339165634933} a^{4} - \frac{2951620657117586530706881972736083763}{29916989600059096638677441339165634933} a^{3} - \frac{12589229373049507600421870787062492585}{89750968800177289916032324017496904799} a^{2} + \frac{1480032244892214925827478543758261316}{89750968800177289916032324017496904799} a + \frac{43495695595853571102010408437367092034}{89750968800177289916032324017496904799}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3780010810.32 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1194:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 40 conjugacy class representatives for t16n1194
Character table for t16n1194 is not computed

Intermediate fields

\(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$61$$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
61.2.1.2$x^{2} + 122$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.1.2$x^{2} + 122$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
$97$97.8.7.1$x^{8} - 97$$8$$1$$7$$C_8$$[\ ]_{8}$
97.8.7.1$x^{8} - 97$$8$$1$$7$$C_8$$[\ ]_{8}$