Normalized defining polynomial
\( x^{16} - 3 x^{15} - 260 x^{14} - 440 x^{13} + 9958 x^{12} + 134350 x^{11} + 903564 x^{10} - 1823804 x^{9} - 25340911 x^{8} - 85828035 x^{7} + 138216368 x^{6} + 575302060 x^{5} + 324609488 x^{4} - 971480768 x^{3} - 1401515264 x^{2} - 937304064 x - 102055936 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2410052925086109011392504405401329728649=7^{12}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $289.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{1}{16} a^{3}$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} - \frac{1}{32} a^{5} + \frac{5}{128} a^{4} - \frac{3}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} - \frac{1}{128} a^{7} - \frac{1}{128} a^{6} + \frac{9}{256} a^{5} + \frac{15}{256} a^{4} - \frac{7}{32} a^{3} - \frac{3}{64} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{1024} a^{10} + \frac{1}{1024} a^{9} + \frac{1}{512} a^{8} - \frac{3}{512} a^{7} - \frac{7}{1024} a^{6} + \frac{41}{1024} a^{5} + \frac{1}{256} a^{4} + \frac{7}{256} a^{3} - \frac{1}{4} a^{2} - \frac{5}{16} a - \frac{1}{2}$, $\frac{1}{4096} a^{11} + \frac{1}{4096} a^{9} + \frac{1}{512} a^{8} - \frac{1}{4096} a^{7} + \frac{1}{256} a^{6} + \frac{155}{4096} a^{5} - \frac{19}{512} a^{4} + \frac{201}{1024} a^{3} - \frac{7}{32} a^{2} + \frac{9}{64} a - \frac{1}{8}$, $\frac{1}{8192} a^{12} - \frac{1}{8192} a^{11} + \frac{1}{8192} a^{10} - \frac{9}{8192} a^{9} - \frac{25}{8192} a^{8} + \frac{49}{8192} a^{7} - \frac{21}{8192} a^{6} + \frac{445}{8192} a^{5} + \frac{75}{2048} a^{4} - \frac{297}{2048} a^{3} + \frac{1}{32} a^{2} + \frac{27}{128} a - \frac{3}{16}$, $\frac{1}{32768} a^{13} + \frac{1}{32768} a^{12} - \frac{3}{32768} a^{11} + \frac{9}{32768} a^{10} + \frac{3}{32768} a^{9} - \frac{17}{32768} a^{8} - \frac{337}{32768} a^{7} - \frac{573}{32768} a^{6} - \frac{47}{1024} a^{5} + \frac{257}{8192} a^{4} - \frac{93}{2048} a^{3} + \frac{57}{512} a^{2} - \frac{11}{128} a + \frac{1}{16}$, $\frac{1}{524288} a^{14} + \frac{1}{524288} a^{13} + \frac{29}{524288} a^{12} - \frac{55}{524288} a^{11} - \frac{253}{524288} a^{10} + \frac{911}{524288} a^{9} - \frac{945}{524288} a^{8} - \frac{1341}{524288} a^{7} - \frac{437}{16384} a^{6} - \frac{5367}{131072} a^{5} - \frac{1053}{32768} a^{4} + \frac{311}{8192} a^{3} - \frac{379}{2048} a^{2} + \frac{3}{32} a + \frac{1}{32}$, $\frac{1}{8582891791545894230824426304476045267226853376} a^{15} + \frac{77197610833608778163759611204516244839}{4291445895772947115412213152238022633613426688} a^{14} + \frac{27865252150463555443511812860679606436157}{4291445895772947115412213152238022633613426688} a^{13} + \frac{240336666247995288631529934262640854273449}{4291445895772947115412213152238022633613426688} a^{12} + \frac{103938667067192796143281834913074295099681}{1072861473943236778853053288059505658403356672} a^{11} - \frac{1665191204736422566133190928887037431918109}{4291445895772947115412213152238022633613426688} a^{10} - \frac{3316593189691529993133962009639130258071903}{4291445895772947115412213152238022633613426688} a^{9} - \frac{9599584527276389112052902956695596093197477}{4291445895772947115412213152238022633613426688} a^{8} - \frac{39879249707186052736135323843829176968487369}{8582891791545894230824426304476045267226853376} a^{7} - \frac{36869656766939445472545246886074581639047875}{2145722947886473557706106576119011316806713344} a^{6} - \frac{53827749371752544217075972847763814788872495}{2145722947886473557706106576119011316806713344} a^{5} - \frac{16831698260369883364386659929280945635568553}{536430736971618389426526644029752829201678336} a^{4} + \frac{32275542005577534291397929763811203302812791}{134107684242904597356631661007438207300419584} a^{3} - \frac{6173842386881257720939262783146188249559035}{33526921060726149339157915251859551825104896} a^{2} - \frac{21322922713950396646664781331509983316119}{523858141573846083424342425810305497267264} a + \frac{252580127745252977477658925675240541343905}{523858141573846083424342425810305497267264}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2494293233420000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.8.106199435084165129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 89 | Data not computed | ||||||