Normalized defining polynomial
\( x^{16} - 4 x^{15} - 37 x^{14} + 9581 x^{13} - 621434 x^{12} + 3159219 x^{11} - 122064213 x^{10} - 1318149458 x^{9} + 17745867159 x^{8} - 185731157449 x^{7} + 1070375916313 x^{6} + 8721064590146 x^{5} - 22238144524836 x^{4} + 153070746965979 x^{3} + 852542410999822 x^{2} + 263445165203961 x - 1115465623645375 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(240277040497518512877081049134097240815202879947452081=53^{14}\cdot 89^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2169.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{9} + \frac{3}{20} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} + \frac{1}{20} a^{5} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} - \frac{3}{20} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{100} a^{13} - \frac{1}{50} a^{11} - \frac{1}{20} a^{10} + \frac{1}{100} a^{9} - \frac{3}{50} a^{8} + \frac{19}{50} a^{7} - \frac{19}{100} a^{6} + \frac{4}{25} a^{5} + \frac{3}{50} a^{4} + \frac{49}{100} a^{3} + \frac{49}{100} a^{2} - \frac{3}{100} a - \frac{1}{2}$, $\frac{1}{65810464927594123000} a^{14} + \frac{278846687189562719}{65810464927594123000} a^{13} + \frac{770792275568298273}{65810464927594123000} a^{12} + \frac{682305670974248047}{65810464927594123000} a^{11} + \frac{220468168023435219}{16452616231898530750} a^{10} + \frac{2996559589743268799}{32905232463797061500} a^{9} + \frac{31790296825509838689}{65810464927594123000} a^{8} - \frac{29175187410877815057}{65810464927594123000} a^{7} + \frac{1343331107971172289}{13162092985518824600} a^{6} + \frac{197259225856536421}{2632418597103764920} a^{5} - \frac{22188313288053287427}{65810464927594123000} a^{4} - \frac{55950316496779469}{1316209298551882460} a^{3} + \frac{18095593191630906043}{65810464927594123000} a^{2} - \frac{5416270960643683891}{32905232463797061500} a + \frac{122102015912310971}{526483719420752984}$, $\frac{1}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a^{15} + \frac{967179647527980628842352266984952340578087832507626043474680172593486469}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{14} + \frac{940038882389086893071275696119724934142467720134113044520509485133232401779072874165044867}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{13} + \frac{5458617126350814277830206335064186425211329812314961034311783257982967070166328932909160167}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{12} + \frac{22611228052000338210297109696905823003709285192393442028605167588961096486478131376440971969}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a^{11} + \frac{14083015096894745851770887201252366163761546338491552237425542059496534281553783753918400121}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{10} - \frac{58607041486200284817701725576374174839103651769101661018850737699885525378052491468480725449}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a^{9} + \frac{69434868296453880860668661841809204042844260909490936557855401984859695375347221892041277867}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{8} + \frac{111943097948523383307745362135659985618329799275090173444231721647915286456852739478830425081}{488806691317477659179092035248252324763040948458448879568321114995791930709164478153829487500} a^{7} - \frac{6355800262128162017738971791482884499954557739738104576466740747786415846650654497149887491}{48880669131747765917909203524825232476304094845844887956832111499579193070916447815382948750} a^{6} + \frac{38781068075122919557602516943405298648098044972203379239009791013038201743367989761972614031}{122201672829369414794773008812063081190760237114612219892080278748947982677291119538457371875} a^{5} + \frac{139136759174969083854463490510420051068173131583018364493924535810064807395027617909554626637}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a^{4} - \frac{102020643920928106656298603634107023942435205688734618204959486903766196690613721933270639507}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a^{3} + \frac{66579487012750729091198952393844321451266039318584002770313206571420805661507671650892461827}{195522676526991063671636814099300929905216379383379551827328445998316772283665791261531795000} a^{2} + \frac{427426420798873734279783628675871753669125596990579509779160234306279209655353349623388717017}{977613382634955318358184070496504649526081896916897759136642229991583861418328956307658975000} a - \frac{341029949821380413682677841965144716944558157204859300078005225290151267665612912394873801}{710991551007240231533224778542912472382605015939562006644830712721151899213330150041933800}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 337089472222000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.1980257921.1, 8.8.980359279842244243492241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.3 | $x^{8} + 106$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.3 | $x^{8} + 106$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 89 | Data not computed | ||||||