Properties

Label 16.8.23960729891...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{32}\cdot 5^{8}\cdot 7^{4}\cdot 29^{6}$
Root discriminant $51.43$
Ramified primes $2, 5, 7, 29$
Class number $6$ (GRH)
Class group $[6]$ (GRH)
Galois group $C_2\times D_4:D_4$ (as 16T265)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14641, 0, -37752, 0, -47493, 0, -3630, 0, 7741, 0, -160, 0, -117, 0, -6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^14 - 117*x^12 - 160*x^10 + 7741*x^8 - 3630*x^6 - 47493*x^4 - 37752*x^2 + 14641)
 
gp: K = bnfinit(x^16 - 6*x^14 - 117*x^12 - 160*x^10 + 7741*x^8 - 3630*x^6 - 47493*x^4 - 37752*x^2 + 14641, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{14} - 117 x^{12} - 160 x^{10} + 7741 x^{8} - 3630 x^{6} - 47493 x^{4} - 37752 x^{2} + 14641 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2396072989114866073600000000=2^{32}\cdot 5^{8}\cdot 7^{4}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{65} a^{12} + \frac{3}{65} a^{10} - \frac{6}{65} a^{8} - \frac{27}{65} a^{6} + \frac{4}{65} a^{2} - \frac{4}{13}$, $\frac{1}{715} a^{13} + \frac{16}{715} a^{11} + \frac{59}{715} a^{9} - \frac{248}{715} a^{7} - \frac{18}{55} a^{5} - \frac{3}{13} a^{3} + \frac{71}{715} a$, $\frac{1}{2388384881583415} a^{14} - \frac{837485165652}{183721913967955} a^{12} + \frac{75011558577421}{2388384881583415} a^{10} + \frac{119104110851522}{2388384881583415} a^{8} + \frac{39921601755371}{477676976316683} a^{6} + \frac{1055547623027}{19738718029615} a^{4} - \frac{35487688882863}{77044673599465} a^{2} - \frac{1265350084152}{19738718029615}$, $\frac{1}{26272233697417565} a^{15} - \frac{837485165652}{2020941053647505} a^{13} + \frac{2463396440160836}{26272233697417565} a^{11} - \frac{358320758883042}{5254446739483513} a^{9} + \frac{3543346842993636}{26272233697417565} a^{7} - \frac{50265119253972}{217125898325765} a^{5} + \frac{57619988046978}{169498281918823} a^{3} - \frac{12885849555784}{43425179665153} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}$, which has order $6$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9958003.99307 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times D_4:D_4$ (as 16T265):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_2\times D_4:D_4$
Character table for $C_2\times D_4:D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), 4.4.725.1, 4.4.46400.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.3059356160000.2, 8.4.191209760000.2, 8.8.2152960000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
$29$29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$