Normalized defining polynomial
\( x^{16} - 16 x^{14} - 291 x^{12} + 2492 x^{10} + 25077 x^{8} + 30716 x^{6} - 95104 x^{4} - 105792 x^{2} + 92416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23630709513618089564484100000000=2^{8}\cdot 5^{8}\cdot 17^{4}\cdot 19^{2}\cdot 97^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 19, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{6} a^{8} + \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{3} a^{4} + \frac{1}{12} a^{2} - \frac{1}{3}$, $\frac{1}{48} a^{11} - \frac{1}{12} a^{9} + \frac{5}{48} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{11}{48} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{96} a^{12} - \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{32} a^{8} + \frac{1}{6} a^{7} + \frac{1}{12} a^{6} - \frac{1}{12} a^{5} + \frac{5}{96} a^{4} - \frac{1}{12} a^{2} + \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{192} a^{13} - \frac{1}{24} a^{10} - \frac{1}{64} a^{9} + \frac{11}{48} a^{7} + \frac{1}{8} a^{6} - \frac{11}{192} a^{5} + \frac{1}{6} a^{4} + \frac{11}{48} a^{3} + \frac{11}{24} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{2289374465846016} a^{14} - \frac{615944856531}{190781205487168} a^{12} + \frac{31174213880751}{763124821948672} a^{10} - \frac{1}{12} a^{9} - \frac{1618295625793}{286171808230752} a^{8} + \frac{1}{6} a^{7} - \frac{173230924221017}{763124821948672} a^{6} - \frac{1}{12} a^{5} - \frac{102318480067501}{286171808230752} a^{4} - \frac{2341398181453}{5961912671474} a^{2} + \frac{5}{12} a - \frac{386841574675}{1882709264676}$, $\frac{1}{9157497863384064} a^{15} - \frac{1}{4578748931692032} a^{14} + \frac{4114078101881}{2289374465846016} a^{13} - \frac{4114078101881}{1144687232923008} a^{12} - \frac{1867961101331}{9157497863384064} a^{11} - \frac{188913244385837}{4578748931692032} a^{10} - \frac{2640291158251}{286171808230752} a^{9} + \frac{2640291158251}{143085904115376} a^{8} - \frac{328911567175883}{9157497863384064} a^{7} + \frac{901255183637387}{4578748931692032} a^{6} + \frac{12422381865121}{71542952057688} a^{5} - \frac{6460469193647}{35771476028844} a^{4} - \frac{52800821453299}{143085904115376} a^{3} + \frac{2341398181453}{11923825342948} a^{2} - \frac{1014411329567}{7530837058704} a + \frac{547327028153}{1255139509784}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23574232752.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 55 conjugacy class representatives for t16n1123 are not computed |
| Character table for t16n1123 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{485}) \), \(\Q(\sqrt{5}, \sqrt{97})\), 8.8.15990601380625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97 | Data not computed | ||||||