Normalized defining polynomial
\( x^{16} - 52 x^{14} - 1154 x^{12} + 53664 x^{10} + 661003 x^{8} - 9553232 x^{6} - 85010586 x^{4} - 47271276 x^{2} + 81342361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23564170227158193941354905600000000=2^{44}\cdot 5^{8}\cdot 7^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{24} a^{8} - \frac{1}{12} a^{6} + \frac{3}{8} a^{4} + \frac{1}{4} a^{2} - \frac{7}{24}$, $\frac{1}{24} a^{9} - \frac{1}{12} a^{7} + \frac{3}{8} a^{5} + \frac{1}{4} a^{3} - \frac{7}{24} a$, $\frac{1}{24} a^{10} + \frac{5}{24} a^{6} + \frac{5}{24} a^{2} + \frac{5}{12}$, $\frac{1}{24} a^{11} + \frac{5}{24} a^{7} + \frac{5}{24} a^{3} + \frac{5}{12} a$, $\frac{1}{24} a^{12} + \frac{5}{12} a^{6} + \frac{1}{3} a^{4} + \frac{1}{6} a^{2} + \frac{11}{24}$, $\frac{1}{24} a^{13} + \frac{5}{12} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{3} + \frac{11}{24} a$, $\frac{1}{2148523719374675351414757264} a^{14} - \frac{1}{48} a^{13} + \frac{2142342325242162059816353}{537130929843668837853689316} a^{12} - \frac{1}{48} a^{11} + \frac{30223843542720327798455381}{2148523719374675351414757264} a^{10} + \frac{41891216492553259868774389}{2148523719374675351414757264} a^{8} + \frac{3}{16} a^{7} + \frac{727385505591714801989227075}{2148523719374675351414757264} a^{6} + \frac{1}{3} a^{5} + \frac{61143557695685869016705837}{716174573124891783804919088} a^{4} - \frac{3}{16} a^{3} + \frac{60739469196720643529866103}{1074261859687337675707378632} a^{2} - \frac{7}{16} a - \frac{16489978167989567419808059}{74087024806023287979819216}$, $\frac{1}{668190876725524034289989509104} a^{15} + \frac{2380897642777172682093059891}{668190876725524034289989509104} a^{13} - \frac{1}{48} a^{12} - \frac{4483359615669366353125420331}{334095438362762017144994754552} a^{11} - \frac{1}{48} a^{10} - \frac{3775793377288367936011438711}{222730292241841344763329836368} a^{9} - \frac{105786807257559196679840737537}{334095438362762017144994754552} a^{7} + \frac{3}{16} a^{6} + \frac{220854721017194338491940811501}{668190876725524034289989509104} a^{5} + \frac{1}{3} a^{4} - \frac{94995456554756248749531084169}{668190876725524034289989509104} a^{3} - \frac{3}{16} a^{2} - \frac{255973478279135152892424533}{11520532357336621280861888088} a - \frac{7}{16}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52372122680.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4.C_2^3.C_2$ (as 16T264):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $D_4.C_2^3.C_2$ |
| Character table for $D_4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), 4.4.2273600.4, 4.4.568400.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.82708111360000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |