Properties

Label 16.8.23563276747...0553.2
Degree $16$
Signature $[8, 4]$
Discriminant $61^{2}\cdot 97^{15}$
Root discriminant $121.83$
Ramified primes $61, 97$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T841

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-493501, 5935959, -20810458, 29524424, -13917442, -1808530, 1930786, -1141194, 280960, 15370, -15504, 6702, -1026, -70, 30, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 30*x^14 - 70*x^13 - 1026*x^12 + 6702*x^11 - 15504*x^10 + 15370*x^9 + 280960*x^8 - 1141194*x^7 + 1930786*x^6 - 1808530*x^5 - 13917442*x^4 + 29524424*x^3 - 20810458*x^2 + 5935959*x - 493501)
 
gp: K = bnfinit(x^16 - 8*x^15 + 30*x^14 - 70*x^13 - 1026*x^12 + 6702*x^11 - 15504*x^10 + 15370*x^9 + 280960*x^8 - 1141194*x^7 + 1930786*x^6 - 1808530*x^5 - 13917442*x^4 + 29524424*x^3 - 20810458*x^2 + 5935959*x - 493501, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 1026 x^{12} + 6702 x^{11} - 15504 x^{10} + 15370 x^{9} + 280960 x^{8} - 1141194 x^{7} + 1930786 x^{6} - 1808530 x^{5} - 13917442 x^{4} + 29524424 x^{3} - 20810458 x^{2} + 5935959 x - 493501 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2356327674777993305467029827040553=61^{2}\cdot 97^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $121.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $61, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{39425017156339829983781249} a^{14} - \frac{7}{39425017156339829983781249} a^{13} - \frac{76881275797596252336047}{540068728169038766901113} a^{12} - \frac{5751018356992671460592572}{39425017156339829983781249} a^{11} + \frac{9754631884086167183532137}{39425017156339829983781249} a^{10} - \frac{2626327340721319192859150}{39425017156339829983781249} a^{9} + \frac{18211690996996113773508583}{39425017156339829983781249} a^{8} - \frac{2074950401556436052053691}{39425017156339829983781249} a^{7} - \frac{16281634525883597377875}{540068728169038766901113} a^{6} - \frac{7906399418905814506354143}{39425017156339829983781249} a^{5} - \frac{4167280783733513058848052}{39425017156339829983781249} a^{4} - \frac{13857664010912818077280533}{39425017156339829983781249} a^{3} + \frac{105295694764148361930680}{646311756661308688258709} a^{2} + \frac{8795172504741270342292253}{39425017156339829983781249} a + \frac{16292445003958247756799325}{39425017156339829983781249}$, $\frac{1}{4060776767103002488329468647} a^{15} + \frac{44}{4060776767103002488329468647} a^{14} + \frac{1531963335964028842946936923}{4060776767103002488329468647} a^{13} - \frac{94854922369744368988789308}{4060776767103002488329468647} a^{12} - \frac{1150897681762016336949876513}{4060776767103002488329468647} a^{11} + \frac{21759692871595247361904849}{4060776767103002488329468647} a^{10} - \frac{1377331552382665724543308035}{4060776767103002488329468647} a^{9} + \frac{138220947318448766721259062}{4060776767103002488329468647} a^{8} + \frac{642064296170689028428520615}{4060776767103002488329468647} a^{7} - \frac{1172423405136285687090057740}{4060776767103002488329468647} a^{6} + \frac{1051331983636643656516996868}{4060776767103002488329468647} a^{5} + \frac{1981411976773708495013218759}{4060776767103002488329468647} a^{4} + \frac{718982790452293207552589261}{4060776767103002488329468647} a^{3} + \frac{1716245679387900873740981448}{4060776767103002488329468647} a^{2} - \frac{11122610734231016955999213}{66570110936114794890647027} a - \frac{824936025364402223722046883}{4060776767103002488329468647}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19911357834.4 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T841:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 32 conjugacy class representatives for t16n841
Character table for t16n841 is not computed

Intermediate fields

\(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ $16$ $16$ $16$ $16$ $16$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ $16$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$61$$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{61}$$x + 2$$1$$1$$0$Trivial$[\ ]$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.1.1$x^{2} - 61$$2$$1$$1$$C_2$$[\ ]_{2}$
97Data not computed