Normalized defining polynomial
\( x^{16} - x^{15} + 52 x^{14} - 193 x^{13} - 223 x^{12} + 2279 x^{11} - 31773 x^{10} + 8184 x^{9} + 186871 x^{8} - 188533 x^{7} + 2009890 x^{6} + 742099 x^{5} - 15046663 x^{4} + 5401798 x^{3} + 23108071 x^{2} - 12535249 x - 4070861 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2356327674777993305467029827040553=61^{2}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{35679708576067477719526718755090596764065681617481862696353} a^{15} + \frac{17486049884488387796336773959586970398923544352087184041519}{35679708576067477719526718755090596764065681617481862696353} a^{14} - \frac{5338916158337090784891904009214390182248565771852358546}{184868956352681231707392325155909827793086433251201361121} a^{13} + \frac{30482258771335944853176412312717098334863882676221584907}{184868956352681231707392325155909827793086433251201361121} a^{12} + \frac{15556200836322027080367406054770628676478118186464642887483}{35679708576067477719526718755090596764065681617481862696353} a^{11} + \frac{14629447716323392128712767962782677586523290369275455061122}{35679708576067477719526718755090596764065681617481862696353} a^{10} - \frac{525987509701933618116191834886093456664591993439099183111}{35679708576067477719526718755090596764065681617481862696353} a^{9} - \frac{13409831778347950346621400445706587065483286649273776115886}{35679708576067477719526718755090596764065681617481862696353} a^{8} + \frac{3614889898490208618244954935244620321402696192225598146641}{35679708576067477719526718755090596764065681617481862696353} a^{7} + \frac{11969873641910836290210052114112328148683904091995846618941}{35679708576067477719526718755090596764065681617481862696353} a^{6} - \frac{15377267181874637599863396149716639654310541305907813253350}{35679708576067477719526718755090596764065681617481862696353} a^{5} + \frac{9267924309719009050170364598605777832538262317157451945567}{35679708576067477719526718755090596764065681617481862696353} a^{4} + \frac{12167868937783021633302858463296248963823844648172968130432}{35679708576067477719526718755090596764065681617481862696353} a^{3} - \frac{1936685810587635485437774932422840537500614597317378602538}{35679708576067477719526718755090596764065681617481862696353} a^{2} + \frac{7665613840230576516548625245264150007106924706684483576488}{35679708576067477719526718755090596764065681617481862696353} a + \frac{6829921904620007028015520636081683637158905251367348377241}{35679708576067477719526718755090596764065681617481862696353}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19425520160.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97 | Data not computed | ||||||