Normalized defining polynomial
\( x^{16} - 2 x^{15} - 57 x^{14} + 166 x^{13} + 1205 x^{12} - 2219 x^{11} - 15512 x^{10} - 12497 x^{9} + 138641 x^{8} + 39660 x^{7} - 996205 x^{6} + 3584050 x^{5} + 8988535 x^{4} - 7132265 x^{3} - 15247495 x^{2} + 500420 x + 1115995 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(231501630828342033704595947265625=5^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{542} a^{14} - \frac{42}{271} a^{13} + \frac{21}{271} a^{12} - \frac{205}{542} a^{11} - \frac{94}{271} a^{10} + \frac{39}{271} a^{9} + \frac{118}{271} a^{8} + \frac{121}{542} a^{7} + \frac{213}{542} a^{6} + \frac{175}{542} a^{5} + \frac{3}{542} a^{4} + \frac{89}{542} a^{3} - \frac{8}{271} a^{2} - \frac{21}{542} a - \frac{173}{542}$, $\frac{1}{33346011051613231151711714652560251543678101135261358} a^{15} + \frac{10033632628135428263543688549916229608324404348820}{16673005525806615575855857326280125771839050567630679} a^{14} - \frac{239089415174049306502267141000962028049575216873886}{16673005525806615575855857326280125771839050567630679} a^{13} + \frac{131168565984014310154513023864874650272580604052247}{16673005525806615575855857326280125771839050567630679} a^{12} - \frac{8334502907527434404512024464332713531259268670884043}{33346011051613231151711714652560251543678101135261358} a^{11} - \frac{1749653159171290364850311270377526004716497809462358}{16673005525806615575855857326280125771839050567630679} a^{10} - \frac{31479088334781985521793279683020180605730435044834}{16673005525806615575855857326280125771839050567630679} a^{9} + \frac{16337459570326937386069079028255422144799859458179301}{33346011051613231151711714652560251543678101135261358} a^{8} + \frac{4609598284218039517693014552561428982346123025293773}{33346011051613231151711714652560251543678101135261358} a^{7} - \frac{236812820142007253881012734901876253356437075957475}{33346011051613231151711714652560251543678101135261358} a^{6} + \frac{1056751401684274630796905443742314659366123225534772}{16673005525806615575855857326280125771839050567630679} a^{5} - \frac{3411773819969509325292253700141978453672961933698591}{33346011051613231151711714652560251543678101135261358} a^{4} + \frac{6162775688117938137255880322936230927705162590773085}{16673005525806615575855857326280125771839050567630679} a^{3} - \frac{7988705986559856466620346969599534673558727776704328}{16673005525806615575855857326280125771839050567630679} a^{2} + \frac{12191847915994857624525934589170690742213386200882441}{33346011051613231151711714652560251543678101135261358} a - \frac{264913430309602131452415727072747329162238448183837}{546655918878905428716585486107545107273411494020678}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4362739110.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{41}) \), \(\Q(\sqrt{205}) \), \(\Q(\sqrt{5}, \sqrt{41})\), 8.8.74220378765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |