Normalized defining polynomial
\( x^{16} - 2 x^{15} - 57 x^{14} + 166 x^{13} + 1000 x^{12} - 4679 x^{11} - 12232 x^{10} + 101483 x^{9} - 54879 x^{8} - 1396365 x^{7} + 5011730 x^{6} - 6772345 x^{5} + 2304100 x^{4} + 3221670 x^{3} - 3142655 x^{2} + 796850 x - 50455 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(231501630828342033704595947265625=5^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{8}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{9}$, $\frac{1}{123915991178364835709648616031538776147227988620725} a^{15} - \frac{7384053809911971033835069486756860844084822533863}{123915991178364835709648616031538776147227988620725} a^{14} - \frac{8893141164044578806923870453060021011054386247564}{123915991178364835709648616031538776147227988620725} a^{13} - \frac{2171602643450053954985428175431695623519629406487}{24783198235672967141929723206307755229445597724145} a^{12} + \frac{9448693838891114583760726663608155766004943737133}{24783198235672967141929723206307755229445597724145} a^{11} + \frac{1037444425623169059236800180437201849176682472701}{123915991178364835709648616031538776147227988620725} a^{10} + \frac{316359791892297984347446055463349088278798279187}{123915991178364835709648616031538776147227988620725} a^{9} - \frac{61386460244159992474655829632393330288123468314879}{123915991178364835709648616031538776147227988620725} a^{8} - \frac{2697903697722013860366254914657335286934164865702}{24783198235672967141929723206307755229445597724145} a^{7} - \frac{11421871239897639925802383362217946682130578270371}{24783198235672967141929723206307755229445597724145} a^{6} - \frac{2430152720342738625309477467928629276286019780168}{24783198235672967141929723206307755229445597724145} a^{5} + \frac{5049304051508911450188097151245598025823249292439}{24783198235672967141929723206307755229445597724145} a^{4} - \frac{10296345501322851122912544132550856139826348650564}{24783198235672967141929723206307755229445597724145} a^{3} - \frac{3331399323486953503651466925893418240820688011537}{24783198235672967141929723206307755229445597724145} a^{2} - \frac{4539846837217117177740218929273391813614146583299}{24783198235672967141929723206307755229445597724145} a + \frac{9752054644090194483069484310611850532969135339229}{24783198235672967141929723206307755229445597724145}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3314603613.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{205}) \), \(\Q(\sqrt{5}, \sqrt{41})\), 8.8.74220378765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.1 | $x^{8} - 5$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |