Normalized defining polynomial
\( x^{16} - x^{15} - 28 x^{14} - 91 x^{13} + 147 x^{12} + 2372 x^{11} + 4771 x^{10} - 11007 x^{9} - 72564 x^{8} - 113581 x^{7} + 312141 x^{6} + 994380 x^{5} + 247876 x^{4} - 507536 x^{3} - 289456 x^{2} - 35712 x + 1024 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228732005557745506375281661426849=37^{4}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} - \frac{1}{16} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{7}{32} a^{6} + \frac{7}{32} a^{5} + \frac{3}{32} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{64} a^{11} + \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{11}{64} a^{5} + \frac{7}{32} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{128} a^{14} - \frac{3}{128} a^{11} - \frac{5}{128} a^{8} - \frac{1}{32} a^{7} + \frac{7}{32} a^{6} + \frac{7}{128} a^{5} + \frac{5}{32} a^{4} + \frac{13}{32} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8} a$, $\frac{1}{152167066695341252316432728502272} a^{15} - \frac{484048345412768341404226845}{38041766673835313079108182125568} a^{14} - \frac{639047672191395039746462417}{4755220834229414134888522765696} a^{13} + \frac{1000879377232215610669482728581}{152167066695341252316432728502272} a^{12} - \frac{168737154933636240418572597067}{38041766673835313079108182125568} a^{11} - \frac{830856639885873786772761817171}{19020883336917656539554091062784} a^{10} + \frac{8797745598850049652007709160555}{152167066695341252316432728502272} a^{9} + \frac{18239660281117356092048779647}{9510441668458828269777045531392} a^{8} - \frac{492766212152805546908845052137}{38041766673835313079108182125568} a^{7} + \frac{29479877386192044156691692735231}{152167066695341252316432728502272} a^{6} + \frac{38839930874458626352329947701}{2377610417114707067444261382848} a^{5} - \frac{8477550768952624129851867871061}{38041766673835313079108182125568} a^{4} + \frac{6533076239777012297802498679}{594402604278676766861065345712} a^{3} + \frac{4456712074651811300235828548527}{9510441668458828269777045531392} a^{2} - \frac{97402212706101592666827767113}{1188805208557353533722130691424} a + \frac{28688494403011715697491725859}{148600651069669191715266336428}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136240858571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.4.408753745206589.1, 8.8.15123888572643793.1, 8.4.5599366372693.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |