Normalized defining polynomial
\( x^{16} - 6 x^{15} + 59 x^{14} - 442 x^{13} + 341 x^{12} + 4526 x^{11} - 75553 x^{10} + 239203 x^{9} + 64529 x^{8} + 554051 x^{7} + 7514944 x^{6} - 396868 x^{5} + 7128834 x^{4} + 811415 x^{3} - 78387230 x^{2} - 94897975 x - 30234725 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22866941668155620674130869140625=5^{10}\cdot 29^{6}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{60} a^{14} + \frac{7}{30} a^{13} + \frac{1}{15} a^{12} - \frac{1}{5} a^{11} + \frac{7}{20} a^{10} + \frac{13}{30} a^{9} + \frac{1}{5} a^{8} - \frac{9}{20} a^{7} + \frac{29}{60} a^{6} - \frac{2}{5} a^{5} + \frac{3}{20} a^{4} - \frac{7}{15} a^{3} + \frac{19}{60} a^{2} + \frac{1}{4} a + \frac{1}{12}$, $\frac{1}{374227521131359410558937565545135830560809257506351851204751400} a^{15} + \frac{118844580903764211606428281008330547060075519650921483702571}{19696185322703126871523029765533464766358381974018518484460600} a^{14} + \frac{4782610575812063381367516400287520651969573862163872252219857}{187113760565679705279468782772567915280404628753175925602375700} a^{13} - \frac{17267247176519328210379021694770810144796007408524267768066983}{93556880282839852639734391386283957640202314376587962801187850} a^{12} + \frac{20268070477818863341575753194219608299151240837777669109384607}{124742507043786470186312521848378610186936419168783950401583800} a^{11} - \frac{88744582176442770116903543891057540995725824155385700998421739}{374227521131359410558937565545135830560809257506351851204751400} a^{10} - \frac{46148864019217930177825844315864513542075659777260937761967019}{187113760565679705279468782772567915280404628753175925602375700} a^{9} + \frac{33478579040407540797460142432482673728423705214322336392931591}{124742507043786470186312521848378610186936419168783950401583800} a^{8} - \frac{9731070049550375055865268804270738740475680633060912866675559}{93556880282839852639734391386283957640202314376587962801187850} a^{7} - \frac{151090486691307452237130436405356244139892752509027471782316349}{374227521131359410558937565545135830560809257506351851204751400} a^{6} - \frac{7119946418535873732064282030694191117236924252740578989969437}{124742507043786470186312521848378610186936419168783950401583800} a^{5} + \frac{1476592921583450731693409492881219392355246976364866911206773}{19696185322703126871523029765533464766358381974018518484460600} a^{4} - \frac{77383300563926321719750342373652396532885686828980957540749441}{374227521131359410558937565545135830560809257506351851204751400} a^{3} - \frac{2656872837445307035530366150969295553917777002133631157135088}{9355688028283985263973439138628395764020231437658796280118785} a^{2} + \frac{10124182242086682048948803973080135233116974094196792102575041}{37422752113135941055893756554513583056080925750635185120475140} a - \frac{5592515621573863185653678655762222222384780672441395401889849}{14969100845254376422357502621805433222432370300254074048190056}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2889847525.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T516):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.2, 4.4.2225.1, 4.4.725.1, 8.8.4163475625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |