Normalized defining polynomial
\( x^{16} - 4 x^{15} - 95 x^{14} + 186 x^{13} + 1453 x^{12} - 1618 x^{11} - 10858 x^{10} - 10191 x^{9} + 115392 x^{8} + 37183 x^{7} - 308471 x^{6} - 573657 x^{5} - 180276 x^{4} + 4204490 x^{3} - 1512478 x^{2} - 7613151 x + 6522823 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228335766107949731571841524994747244921=41^{15}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} + \frac{14}{31} a^{13} + \frac{1}{31} a^{12} + \frac{4}{31} a^{11} + \frac{5}{31} a^{10} - \frac{13}{31} a^{9} + \frac{1}{31} a^{8} + \frac{8}{31} a^{7} - \frac{2}{31} a^{6} + \frac{1}{31} a^{5} - \frac{1}{31} a^{4} + \frac{10}{31} a^{3} + \frac{15}{31} a^{2} + \frac{3}{31} a - \frac{11}{31}$, $\frac{1}{5336978968963281261361482751471780934124938179039} a^{15} + \frac{65749309521097278559253001786222174393715125297}{5336978968963281261361482751471780934124938179039} a^{14} + \frac{1895948686751230056520995907212055403504905840305}{5336978968963281261361482751471780934124938179039} a^{13} - \frac{546244274052700244039962257732477222392937001030}{5336978968963281261361482751471780934124938179039} a^{12} + \frac{862642281176783892638448120528828104430785078762}{5336978968963281261361482751471780934124938179039} a^{11} + \frac{1096314229414394135761608137892474754395814608123}{5336978968963281261361482751471780934124938179039} a^{10} + \frac{1607194874771506507606491077076560634585540136000}{5336978968963281261361482751471780934124938179039} a^{9} + \frac{1218531958072174822185315736525279673920725813920}{5336978968963281261361482751471780934124938179039} a^{8} + \frac{2218061319222052988234827664861433703144321425470}{5336978968963281261361482751471780934124938179039} a^{7} - \frac{1832001848670331042665325146164094514735135964044}{5336978968963281261361482751471780934124938179039} a^{6} - \frac{906781189414137942148714481332315272029052980552}{5336978968963281261361482751471780934124938179039} a^{5} + \frac{1124435959473641522986830699801264458514959519237}{5336978968963281261361482751471780934124938179039} a^{4} - \frac{1130583596865714321679943851203208783174131504091}{5336978968963281261361482751471780934124938179039} a^{3} - \frac{2383172682417120320655530251870301338827447562296}{5336978968963281261361482751471780934124938179039} a^{2} + \frac{1008111281218353469866097969360645736061346048854}{5336978968963281261361482751471780934124938179039} a - \frac{100606282999274802775530866194044801946753278084}{232042563867968750493977510933555692788040790393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16140993152900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.2359907842908948041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |