Normalized defining polynomial
\( x^{16} - 6 x^{15} - 19 x^{14} + 146 x^{13} - 1226 x^{12} + 4777 x^{11} - 15679 x^{10} + 19837 x^{9} + 486106 x^{8} - 3318762 x^{7} + 13506349 x^{6} - 36196089 x^{5} + 56092254 x^{4} - 43863073 x^{3} + 10625946 x^{2} + 4815730 x - 1985183 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228335766107949731571841524994747244921=41^{15}\cdot 59^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $249.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{12393624195792456850524556462947612295172742144713644441} a^{15} + \frac{3233212349402973442149537150657963277041898379626309653}{12393624195792456850524556462947612295172742144713644441} a^{14} - \frac{5770346557218303418805626187087884654699080772105294291}{12393624195792456850524556462947612295172742144713644441} a^{13} - \frac{3544595572447928612189822918875611625878077911900419742}{12393624195792456850524556462947612295172742144713644441} a^{12} + \frac{4457905105589615777225313217545706748884528897736857706}{12393624195792456850524556462947612295172742144713644441} a^{11} - \frac{1283911364034211456736548825368853872130074576861761503}{12393624195792456850524556462947612295172742144713644441} a^{10} - \frac{4622924586694314148587286611384169070172294839828713963}{12393624195792456850524556462947612295172742144713644441} a^{9} - \frac{6018779885761119753052409219546658593723924193306307328}{12393624195792456850524556462947612295172742144713644441} a^{8} + \frac{290986132294341522675232606967744779824267926016423271}{12393624195792456850524556462947612295172742144713644441} a^{7} - \frac{182957528871224260785020904607585313316255481884911909}{12393624195792456850524556462947612295172742144713644441} a^{6} - \frac{2627905094324722957317979967169922157079511138328485343}{12393624195792456850524556462947612295172742144713644441} a^{5} + \frac{647252872768569246643753050009033493424967947029142711}{12393624195792456850524556462947612295172742144713644441} a^{4} - \frac{5897800543248737185507601776102195073149652738238742789}{12393624195792456850524556462947612295172742144713644441} a^{3} - \frac{782471696874216179772729524894168569320899889454622828}{12393624195792456850524556462947612295172742144713644441} a^{2} - \frac{2089314746788830526203109806064017020336340744433800002}{12393624195792456850524556462947612295172742144713644441} a + \frac{5160055836467392163087326233678704719176463152085707459}{12393624195792456850524556462947612295172742144713644441}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16501604898900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.2359907842908948041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |