Properties

Label 16.8.22542913242...0000.2
Degree $16$
Signature $[8, 4]$
Discriminant $2^{44}\cdot 5^{12}\cdot 29^{2}\cdot 79^{2}$
Root discriminant $59.16$
Ramified primes $2, 5, 29, 79$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T797

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5248681, 0, -3555632, 0, -47530, 0, 305008, 0, -3561, 0, -6768, 0, -70, 0, 32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 32*x^14 - 70*x^12 - 6768*x^10 - 3561*x^8 + 305008*x^6 - 47530*x^4 - 3555632*x^2 + 5248681)
 
gp: K = bnfinit(x^16 + 32*x^14 - 70*x^12 - 6768*x^10 - 3561*x^8 + 305008*x^6 - 47530*x^4 - 3555632*x^2 + 5248681, 1)
 

Normalized defining polynomial

\( x^{16} + 32 x^{14} - 70 x^{12} - 6768 x^{10} - 3561 x^{8} + 305008 x^{6} - 47530 x^{4} - 3555632 x^{2} + 5248681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(22542913242136576000000000000=2^{44}\cdot 5^{12}\cdot 29^{2}\cdot 79^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 29, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{3476} a^{12} + \frac{409}{3476} a^{10} + \frac{38}{869} a^{8} - \frac{1051}{3476} a^{6} - \frac{735}{1738} a^{4} - \frac{569}{3476} a^{2} + \frac{19}{44}$, $\frac{1}{3476} a^{13} + \frac{409}{3476} a^{11} + \frac{38}{869} a^{9} - \frac{1051}{3476} a^{7} - \frac{735}{1738} a^{5} - \frac{569}{3476} a^{3} + \frac{19}{44} a$, $\frac{1}{45616273547260375916} a^{14} - \frac{2482433063155835}{45616273547260375916} a^{12} + \frac{2294629500108239997}{22808136773630187958} a^{10} - \frac{121172574153022189}{45616273547260375916} a^{8} + \frac{2043128451715609215}{11404068386815093979} a^{6} + \frac{7808560866151036269}{45616273547260375916} a^{4} + \frac{6330497840162402571}{45616273547260375916} a^{2} - \frac{55049018530183}{905048877966358}$, $\frac{1}{45616273547260375916} a^{15} - \frac{2482433063155835}{45616273547260375916} a^{13} + \frac{2294629500108239997}{22808136773630187958} a^{11} - \frac{121172574153022189}{45616273547260375916} a^{9} + \frac{2043128451715609215}{11404068386815093979} a^{7} + \frac{7808560866151036269}{45616273547260375916} a^{5} + \frac{6330497840162402571}{45616273547260375916} a^{3} - \frac{55049018530183}{905048877966358} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 84101016.0919 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T797:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 62 conjugacy class representatives for t16n797 are not computed
Character table for t16n797 is not computed

Intermediate fields

\(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
79Data not computed