Normalized defining polynomial
\( x^{16} - 2 x^{15} - 4 x^{14} + 42 x^{13} - 50 x^{12} - 506 x^{11} - 808 x^{10} - 138 x^{9} + 2834 x^{8} + 3614 x^{7} - 1932 x^{6} - 2278 x^{5} - 4234 x^{4} - 2786 x^{3} + 8360 x^{2} - 1986 x - 171 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221769872198179225600000000=2^{28}\cdot 5^{8}\cdot 59^{2}\cdot 157^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 59, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{66} a^{14} + \frac{1}{22} a^{13} - \frac{3}{22} a^{12} - \frac{4}{33} a^{11} + \frac{13}{66} a^{10} + \frac{5}{66} a^{9} - \frac{3}{22} a^{8} + \frac{7}{33} a^{7} - \frac{7}{66} a^{6} - \frac{23}{66} a^{5} + \frac{29}{66} a^{4} + \frac{5}{33} a^{3} - \frac{23}{66} a^{2} + \frac{1}{66} a + \frac{1}{22}$, $\frac{1}{74593942671123088535322} a^{15} + \frac{220286315676798178481}{37296971335561544267661} a^{14} + \frac{7959428467229315473}{308239432525302018741} a^{13} - \frac{1921697571279121113103}{8288215852347009837258} a^{12} - \frac{988202838269216612347}{6781267515556644412302} a^{11} - \frac{16003781626223335937}{88068409292943433926} a^{10} - \frac{7712724577353073197265}{74593942671123088535322} a^{9} + \frac{683277544952134417553}{2762738617449003279086} a^{8} - \frac{22993916788803126449611}{74593942671123088535322} a^{7} - \frac{794526246590172002395}{3390633757778322206151} a^{6} - \frac{2812938826560254494556}{12432323778520514755887} a^{5} + \frac{33129332620558725576023}{74593942671123088535322} a^{4} + \frac{7340839094460329313929}{74593942671123088535322} a^{3} - \frac{15704582168056551288851}{74593942671123088535322} a^{2} + \frac{34528688098026098886509}{74593942671123088535322} a + \frac{212690480077909235471}{24864647557041029511774}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45541377.1395 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12288 |
| The 74 conjugacy class representatives for t16n1765 are not computed |
| Character table for t16n1765 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 8.4.63101440000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $59$ | $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{59}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 59.4.2.2 | $x^{4} - 59 x^{2} + 6962$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $157$ | 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.8.4.1 | $x^{8} + 739470 x^{4} - 3869893 x^{2} + 136703970225$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |