Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} + 11 x^{13} - 76 x^{12} - 70 x^{11} + 251 x^{10} - 60 x^{9} + 728 x^{8} + 4407 x^{7} + 5236 x^{6} - 3964 x^{5} - 14617 x^{4} - 24504 x^{3} - 49184 x^{2} - 27208 x + 17936 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21943454004015643378515625=5^{8}\cdot 19^{6}\cdot 103^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{103} a^{12} + \frac{18}{103} a^{11} - \frac{2}{103} a^{10} + \frac{37}{103} a^{9} - \frac{34}{103} a^{8} - \frac{10}{103} a^{7} - \frac{25}{103} a^{6} - \frac{45}{103} a^{5} - \frac{51}{103} a^{4} - \frac{27}{103} a^{3} + \frac{12}{103} a^{2} - \frac{36}{103} a + \frac{2}{103}$, $\frac{1}{206} a^{13} + \frac{43}{103} a^{11} + \frac{73}{206} a^{10} - \frac{41}{103} a^{9} - \frac{8}{103} a^{8} - \frac{51}{206} a^{7} + \frac{48}{103} a^{6} + \frac{19}{103} a^{5} + \frac{67}{206} a^{4} + \frac{43}{103} a^{3} - \frac{23}{103} a^{2} - \frac{71}{206} a - \frac{18}{103}$, $\frac{1}{7828} a^{14} - \frac{4}{1957} a^{13} - \frac{1}{3914} a^{12} - \frac{621}{7828} a^{11} - \frac{1361}{3914} a^{10} + \frac{1183}{3914} a^{9} + \frac{2579}{7828} a^{8} - \frac{31}{3914} a^{7} + \frac{845}{1957} a^{6} - \frac{3585}{7828} a^{5} + \frac{17}{38} a^{4} + \frac{805}{1957} a^{3} - \frac{597}{7828} a^{2} + \frac{31}{206} a - \frac{11}{103}$, $\frac{1}{55901653730001768855064} a^{15} - \frac{987809393500560605}{27950826865000884427532} a^{14} - \frac{23649571492019511417}{27950826865000884427532} a^{13} + \frac{244430135357901579499}{55901653730001768855064} a^{12} + \frac{6644813922337310006777}{13975413432500442213766} a^{11} + \frac{9291514893499117860871}{27950826865000884427532} a^{10} + \frac{10478711028080497157235}{55901653730001768855064} a^{9} - \frac{191540252835214144025}{735548075394760116514} a^{8} + \frac{195464787906847138995}{13975413432500442213766} a^{7} - \frac{17364969929438212898809}{55901653730001768855064} a^{6} + \frac{3510482078544713685}{735548075394760116514} a^{5} - \frac{2174381868945538748082}{6987706716250221106883} a^{4} + \frac{9050257922262820120991}{55901653730001768855064} a^{3} + \frac{800245656371980001297}{6987706716250221106883} a^{2} + \frac{332413271907732183981}{735548075394760116514} a + \frac{1556609896807655835}{6233458266057289123}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5617535.83163 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 31 conjugacy class representatives for t16n1048 |
| Character table for t16n1048 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.1957.1, 8.8.2393655625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $103$ | 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.8.6.2 | $x^{8} + 927 x^{4} + 265225$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |