Normalized defining polynomial
\( x^{16} - 4 x^{15} + 20 x^{13} - 33 x^{12} - 18 x^{11} + 90 x^{10} - 80 x^{9} - 36 x^{8} + 306 x^{7} - 162 x^{6} - 324 x^{5} + 278 x^{4} + 46 x^{3} - 138 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2176782336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{12749} a^{14} - \frac{3219}{12749} a^{13} + \frac{5370}{12749} a^{12} + \frac{5889}{12749} a^{11} - \frac{34}{209} a^{10} - \frac{1924}{12749} a^{9} - \frac{2395}{12749} a^{8} + \frac{3368}{12749} a^{7} - \frac{62}{1159} a^{6} + \frac{4910}{12749} a^{5} - \frac{5839}{12749} a^{4} - \frac{4773}{12749} a^{3} + \frac{699}{12749} a^{2} - \frac{5216}{12749} a - \frac{1291}{12749}$, $\frac{1}{116754060330281} a^{15} + \frac{2334211079}{116754060330281} a^{14} + \frac{22862515458810}{116754060330281} a^{13} - \frac{2236110258942}{10614005484571} a^{12} - \frac{21747538318124}{116754060330281} a^{11} + \frac{2906375022520}{116754060330281} a^{10} + \frac{57895123411698}{116754060330281} a^{9} - \frac{48362649921832}{116754060330281} a^{8} + \frac{36183862443725}{116754060330281} a^{7} + \frac{26619849407210}{116754060330281} a^{6} + \frac{4387972842720}{116754060330281} a^{5} - \frac{27199646984777}{116754060330281} a^{4} + \frac{352030689700}{1914000989021} a^{3} - \frac{29386428917772}{116754060330281} a^{2} + \frac{173097922260}{558631867609} a + \frac{7006901986807}{116754060330281}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42826.6103026 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||